Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Problem 13

Prove Theorem 9.7 .2 by completing the following argument. According to Green's theorem in the plane, if \(C\) is a sufficiently smooth simple closed curve, and if \(F\) and \(G\) are continuous and have continuous first partial derivatives, then $$ \int_{C}[F(x, y) d y-G(x, y) d x]=\iint_{R}\left[F_{x}(x, y)+G_{y}(x, y)\right] d A $$ where \(C\) is traversed counterclockwise and \(R\) is the region enclosed by \(C .\) Assume that \(x=\phi(t), y=\psi(t)\) is a solution of the system ( 15) that is periodic with period \(T\). Let \(C\) be the closed curve given by \(x=\phi(t), y=\psi(t)\) for \(0 \leq t \leq T\). Show that for this curve the line integral is zero. Then show that the conclusion of Theorem 9.7 .2 must follow.

Problem 13

(a) Determine all critical points of the given system of equations. (b) Find the corresponding linear system near each critical point. (c) Find the eigenalues of each linear system. What conclusions can you then draw about the nonlinear system? (d) Draw a phase portrait of the nonlinear system to confirm your conclusions, or to extend them in those cases where the linear system does not provide definite information about the nonlinear system. $$ d x / d t=x-y^{2}, \quad d y / d t=y-x^{2} $$

Problem 13

(a) Find all the critical points (equilibrium solutions). (b) Use a computer to draw a direction field and portrait for the system. (c) From the plot(s) in part (b) determine whether each critical point is asymptotically stable, stable, or unstable, and classify it as to type. $$ d x / d t=(2+x)(y-x), \quad d y / d t=(4-x)(y+x) $$

Problem 14

(a) Determine all critical points of the given system of equations. (b) Find the corresponding linear system near each critical point. (c) Find the eigenalues of each linear system. What conclusions can you then draw about the nonlinear system? (d) Draw a phase portrait of the nonlinear system to confirm your conclusions, or to extend them in those cases where the linear system does not provide definite information about the nonlinear system. $$ d x / d t=1-x y, \quad d y / d t=x-y^{3} $$

Problem 14

(a) Find all the critical points (equilibrium solutions). (b) Use a computer to draw a direction field and portrait for the system. (c) From the plot(s) in part (b) determine whether each critical point is asymptotically stable, stable, or unstable, and classify it as to type. $$ \text { The van der Pol equation: } \quad d x / d t=y, \quad d y / d t=\left(1-x^{2}\right) y-x $$

Problem 14

a. Sketch the nullclines and describe how the critical points move as \(\alpha\) increases. b. Find the critical points. c. Let \(\alpha=2\). Classify each critical point by investigating the corresponding approximate linear system. Draw a phase portrait in a rectangle containing the critical points. d. Find the bifurcation point \(\alpha_{0}\) at which the critical points coincide. Locate this critical point, and find the eigenvalues of the approximate linear system. Draw a phase portrait. e. For \(\alpha>\alpha_{0},\) there are no critical points. Choose such a value of \(\alpha\) and draw a phase portrait. $$x^{\prime}=-\alpha-x+y, \quad y^{\prime}=-4 x+y+x^{2}$$

Problem 15

(a) Determine all critical points of the given system of equations. (b) Find the corresponding linear system near each critical point. (c) Find the eigenalues of each linear system. What conclusions can you then draw about the nonlinear system? (d) Draw a phase portrait of the nonlinear system to confirm your conclusions, or to extend them in those cases where the linear system does not provide definite information about the nonlinear system. $$ d x / d t=-2 x-y-x\left(x^{2}+y^{2}\right), \quad d y / d t=x-y+y\left(x^{2}+y^{2}\right) $$

Problem 15

(a) Find an equation of the form \(H(x, y)=c\) satisfied by the trajectories. (b) Plot several level curves of the function \(H\). These are trajectories of the given system. Indicate the direction of motion on each trajectory. $$ d x / d t=2 y, \quad d y / d t=8 x $$

Problem 15

The equation $$ u^{\prime \prime}-\mu\left(1-\frac{1}{3} u^{\prime 2}\right) u^{\prime}+u=0 $$ is often called the Rayleigh equation. (a) Write the Rayleigh equation as a system of two first order equations. (b) Show that the origin is the only critical point of this system. Determine its type and whether it is stable or unstable. (c) Let \(\mu=1 .\) Choose initial conditions and compute the corresponding solution of the system on an interval such as \(0 \leq t \leq 20\) or longer. Plot \(u\) versus \(t\) and also plot the trajectory in the phase plane. Observe that the trajectory approaches a closed curve (limit cycle). Estimate the amplitude \(A\) and the period \(T\) of the limit cycle. (d) Repeat part (c) for other values of \(\mu,\) such as \(\mu=0.2,0.5,2,\) and \(5 .\) In each case estimate the amplitude \(A\) and the period \(T\). (e) Describe how the limit cycle changes as \(\mu\) increases. For example, make a table of values and/or plot \(A\) and \(T\) as functions of \(\mu .\)

Problem 16

(a) Determine all critical points of the given system of equations. (b) Find the corresponding linear system near each critical point. (c) Find the eigenalues of each linear system. What conclusions can you then draw about the nonlinear system? (d) Draw a phase portrait of the nonlinear system to confirm your conclusions, or to extend them in those cases where the linear system does not provide definite information about the nonlinear system. $$ d x / d t=y+x\left(1-x^{2}-y^{2}\right), \quad d y / d t=-x+y\left(1-x^{2}-y^{2}\right) $$

Access millions of textbook solutions in one place

  • Access over 3 million high quality textbook solutions
  • Access our popular flashcard, quiz, mock-exam and notes features
  • Access our smart AI features to upgrade your learning
Get Vaia Premium now
Access millions of textbook solutions in one place

Recommended explanations on Math Textbooks