Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Problem 16

(a) Find an equation of the form \(H(x, y)=c\) satisfied by the trajectories. (b) Plot several level curves of the function \(H\). These are trajectories of the given system. Indicate the direction of motion on each trajectory. $$ d x / d t=2 y, \quad d y / d t=-8 x $$

Problem 16

Determine the critical point \(\mathbf{x}=\mathbf{x}^{0},\) and then classify its type and examine its stability by making the transformation \(\mathbf{x}=\mathbf{x}^{0}+\mathbf{u} .\) \(\frac{d \mathbf{x}}{d t}=\left(\begin{array}{rr}{0} & {-\beta} \\ {\delta} & {0}\end{array}\right) \mathbf{x}+\left(\begin{array}{r}{\alpha} \\\ {-\gamma}\end{array}\right) ; \quad \alpha, \beta, \gamma, \delta>0\)

Problem 16

The system $$ x^{\prime}=3\left(x+y-\frac{1}{5} x^{3}-k\right), \quad y^{\prime}=-\frac{1}{3}(x+0.8 y-0.7) $$ is a special case of the Fitahugh-Nagumo equations, which model the transmission of neural impulses along an axon. The parameter \(k\) is the external stimulus. (a) For \(k=0\) show that there is one critical point. Find this point and show that it is an asymptotically stable spiral point. Repeat the analysis for \(k=0.5\) and show the critical point is now an unstable spiral point. Draw a phase portrait for the system in each case. (b) Find the value \(k_{0}\) where the critical point changes from asymptotically stable to unstable. Draw a phase portrait for the system for \(k=k_{0}\). (c) For \(k \geq k_{0}\) the system exhibits an asymptotically stable limit cycle. Plot \(x\) versus \(t\) for \(k=k_{0}\) for several periods and estimate the value of the period \(T\). (d) The limit cycle actually exists for a small range of \(k\) below \(k_{0}\). Let \(k_{1}\) be the smallest value of \(k\) for which there is a limit cycle. Find \(k_{1}\).

Problem 17

The equation of motion of a spring-mass system with damping (see Section 3.8) is $$ m \frac{d^{2} u}{d t^{2}}+c \frac{d u}{d t}+k u=0 $$ where \(m, c,\) and \(k\) are positive. Write this second order equation as a system of two first order equations for \(x=u, y=d u / d t .\) Show that \(x=0, y=0\) is a critical point, and analyze the nature and stability of the critical point as a function of the parameters \(m, c,\) and \(k .\) A similar analysis can be applied to the electric circuit equation (see Section 3.8) $$L \frac{d^{2} I}{d t^{2}}+R \frac{d I}{d t}+\frac{1}{C} I=0.$$

Problem 17

Consider the autonomous system $$ d x / d l=y, \quad d y / d t=x+2 x^{3} $$ (a) Show that the critical point \((0,0)\) is a saddle point. (b) Sketch the trajectories for the corresponding linear system by integrating the equation for \(d y / d x\). Show from the parametric form of the solution that the only trajectory on which \(x \rightarrow 0, y \rightarrow 0\) as \(t \rightarrow \infty\) is \(y=-x\). (c) Determine the trajectories for the nonlinear system by integrating the equation for \(d y / d x\). Sketch the trajectories for the nonlinear system that correspond to \(y=-x\) and \(y=x\) for the linear system.

Problem 17

Consider the van der Pol system \(x^{\prime}=y, \quad y^{\prime}=-x+\mu\left(1-x^{2}\right) y\) where now we allow the parameter \(\mu\) to be any real number. a. Show that the origin is the only critical point. Determine its type, its stability property, and how these depend on \(\mu .\) b. Let \(\mu=-1 ;\) draw a phase portrait, and conclude that there is a periodic solution that surrounds the origin. Observe that this periodic solution is unstable. Compare your plot with Figure 9.7 .4. c. Draw a phase portrait for a few other negative values of \(\mu\). Describe how the shape of the periodic solution changes with \(\mu\). d. Consider small positive or negative values of \(\mu .\) By drawing phase portraits, determine how the periodic solution changes as \(\mu \rightarrow 0 .\) Compare the behavior of the van der Pol system as \(\mu\) increases through zero with the behavior of the system in Problem 16.

Problem 17

(a) Find an equation of the form \(H(x, y)=c\) satisfied by the trajectories. (b) Plot several level curves of the function \(H\). These are trajectories of the given system. Indicate the direction of motion on each trajectory. $$ d x / d t=y, \quad d y / d t=2 x+y $$

Problem 18

Consider the autonomous system $$ d x / d t=x, \quad d y / d t=-2 y+x^{3} $$ (a) Show that the critical point \((0,0)\) is a saddle point. (b) Sketch the trajectories for the corresponding linear system and show that the trajectory for which \(x \rightarrow 0, y \rightarrow 0\) as \(t \rightarrow \infty\) is given by \(x=0\). (c) Determine the trajectories for the nonlinear system for \(x \neq 0\) by integrating the equation for \(d y / d x\). Show that the trajectory corresponding to \(x=0\) for the linear system is unaltered, but that the one corresponding to \(y=0\) is \(y=x^{3} / 5 .\) Sketch several of the trajectories for the nonlinear system.

Problem 18

(a) Find an equation of the form \(H(x, y)=c\) satisfied by the trajectories. (b) Plot several level curves of the function \(H\). These are trajectories of the given system. Indicate the direction of motion on each trajectory. $$ d x / d t=-x+y, \quad d y / d t=-x-y $$

Problem 18

Consider the system \(\mathbf{x}^{\prime}=\mathbf{A} \mathbf{x},\) and suppose that \(\mathbf{A}\) has one zero eigenvalue. (a) Show that \(\mathbf{x}=\mathbf{0}\) is a critical point, and that, in addition, every point on a certain straight line through the origin is also a critical point. (b) Let \(r_{1}=0\) and \(r_{2} \neq 0,\) and let \(\boldsymbol{\xi}^{(1)}\) and \(\boldsymbol{\xi}^{(2)}\) be corresponding eigenvectors. Show that the trajectories are as indicated in Figure \(9.1 .8 .\) What is the direction of motion on the trajectories?

Access millions of textbook solutions in one place

  • Access over 3 million high quality textbook solutions
  • Access our popular flashcard, quiz, mock-exam and notes features
  • Access our smart AI features to upgrade your learning
Get Vaia Premium now
Access millions of textbook solutions in one place

Recommended explanations on Math Textbooks