Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Problem 21

Consider the problem $$ y^{\prime \prime}+\lambda y=0, \quad 2 y(0)+y^{\prime}(0)=0, \quad y(1)=0 $$ $$ \begin{array}{l}{\text { (a) Find the determinantal equation satisfied by the positive eigenvalues. Show that }} \\ {\text { there is an infinite sequence of such eigervalues. Find } \lambda_{1} \text { and } \lambda_{2} \text { . Then show that } \lambda_{n} \cong} \\ {[(2 n+1) \pi / 2]^{2} \text { for large } n .}\end{array} $$ $$ \begin{array}{l}{\text { (b) Find the determinantal equation satisfied by the negative eigenvalues. Show that there }} \\ {\text { is exactly one negative eigenvalue and find its value. }}\end{array} $$

Problem 21

Consider the Sturm-Liouville problem $$ -\left[p(x) y^{\prime}\right]^{\prime}+q(x) y=\lambda r(x) y $$ $$ a_{1} y(0)+a_{2} y^{\prime}(0)=0, \quad b_{1} y(1)+b_{2} y^{\prime}(1)=0 $$ where \(p, q,\) and \(r\) satisfy the conditions stated in the text. (a) Show that if \(\lambda\) is an eigenvalue and \(\phi\) a corresponding eigenfunction, then $$ \lambda \int_{0}^{1} r \phi^{2} d x=\int_{0}^{1}\left(p \phi^{2}+q \phi^{2}\right) d x+\frac{b_{1}}{b_{2}} p(1) \phi^{2}(1)-\frac{a_{1}}{a_{2}} p(0) \phi^{2}(0) $$ provided that \(a_{2} \neq 0\) and \(b_{2} \neq 0 .\) How must this result be modified if \(a_{2}=0\) or \(b_{2}=0\) ? (b) Show that if \(q(x) \geq 0\) and if \(b_{1} / b_{2}\) and \(-a_{1} / a_{2}\) are nonnegative, then the eigenvalue \(\lambda\) is nonnegative. (c) Under the conditions of part (b) show that the eigenvalue \(\lambda\) is strictly positive unless \(q(x)=0\) for each \(x\) in \(0 \leq x \leq 1\) and also \(a_{1}=b_{1}=0\)

Problem 22

Use eigenfunction expansions to find the solution of the given boundary value problem. $$ \begin{array}{l}{u_{t}=u_{x x}+e^{-t}(1-x), \quad u(0, t)=0, \quad u_{x}(1, t)=0, \quad u(x, 0)=0} \\ {\text { see Section } 11.2, \text { Problems } 6 \text { and } 7 .}\end{array} $$

Problem 22

Consider the problem $$ y^{\prime \prime}+\lambda y=0, \quad \alpha y(0)+y^{\prime}(0)=0, \quad y(1)=0 $$ $$ \begin{array}{l}{\text { where } \alpha \text { is a given constant. }} \\\ {\text { (a) Show that for all values of } \alpha \text { there is an infinite sequence of positive eigenvalues. }} \\ {\text { (b) If } \alpha<1, \text { show that all (real) eigenvalues are positive. Show the smallest eigenvalue }} \\\ {\text { approaches zero as } \alpha \text { approaches } 1 \text { from below. }} \\ {\text { (c) Show that } \lambda=0 \text { is an eigenvalue only if } \alpha=1} \\ {\text { (d) If } \alpha>1 \text { , show that there is exactly one negative eigenvalue and that this eigenvalue }} \\ {\text { decreases as } \alpha \text { increases. }}\end{array} $$

Problem 23

Consider the boundary value problem $$ r(x) u_{t}=\left[p(x) u_{x}\right]_{x}-q(x) u+F(x) $$ $$ u(0, t)=T_{1}, \quad u(1, t)=T_{2}, \quad u(x, 0)=f(x) $$ (a) Let \(v(x)\) be a solution of the problem $$ \left[p(x) v^{\prime}\right]-q(x) v=-F(x), \quad v(0)=T_{1}, \quad v(1)=T_{2} $$ If \(w(x, t)=u(x, t)-v(x),\) find the boundary value problem satisfied by \(w\), Note that this problem can be solved by the method of this section. (b) Generalize the procedure of part (a) to the case \(u\) satisfies the boundary conditions $$ u_{x}(0, t)-h_{1} u(0, t)=T_{1}, \quad u_{x}(1, t)+h_{2} u(1, t)=T_{2} $$

Problem 23

In this problem we indicate a proof that the eigenfunctions of the Sturm- Liouville problem \((1),(2)\) are real. (a) Let \(\lambda\) be an eigenvalue and \(\phi\) a corresponding eigenfunction. Let \(\phi(x)=U(x)+\) \(i V(x),\) and show that \(U\) and \(V\) are also eigenfunctions corresponding to \(\lambda .\) (b) Using Theorem \(11.2 .3,\) or the result of Problem \(20,\) show that \(U\) and \(V\) are linearly dependent. (c) Show that \(\phi\) must be real, apart from an arbitrary multiplicative constant that may be complex.

Problem 23

Consider the problem $$ y^{\prime \prime}+\lambda y=0, \quad y(0)=0, \quad y^{\prime}(L)=0 $$ $$ \begin{array}{l}{\text { Show that if } \phi_{\infty} \text { and } \phi_{n} \text { are eigenfunctions, corresponding to the eigenvalues } \lambda_{m} \text { and } \lambda_{n},} \\ {\text { respectively, with } \lambda_{m} \neq \lambda_{n} \text { , then }}\end{array} $$ $$ \int_{0}^{L} \phi_{m}(x) \phi_{n}(x) d x=0 $$ $$ \text { Hint. Note that } $$ $$ \phi_{m}^{\prime \prime}+\lambda_{m} \phi_{m}=0, \quad \phi_{n}^{\prime \prime}+\lambda_{n} \phi_{n}=0 $$ $$ \begin{array}{l}{\text { Multiply the first of these equations by } \phi_{n}, \text { the second by } \phi_{m}, \text { and integrate from } 0 \text { to } L,} \\ {\text { using integration by parts. Finally, subtract one equation from the other. }}\end{array} $$

Problem 24

Consider the problem $$ x^{2} y^{\prime \prime}=\lambda\left(x y^{\prime}-y\right), \quad y(1)=0, \quad y(2)=0 $$ Note that \(\lambda\) appears as a coefficient of \(y^{\prime}\) as well as of \(y\) itself. It is possible to extend the definition of self-adjointness to this type of problem, and to show that this particular problem is not self-adjoint. Show that the problem has eigervalues, but that none of them is real. This illustrates that in general nonself-adjoint problems may have eigenvalues that are not real.

Problem 24

Use the method indicated in Problem 23 to solve the given boundary value problem. $$ \begin{array}{l}{u_{t}=u_{x x}-2} \\ {u(0, t)=1, \quad u(1, t)=0} \\ {u(x, 0)=x^{2}-2 x+2}\end{array} $$

Problem 24

In this problem we consider a higher order eigenvalue problem. In the study of transverse vibrations of a uniform elastic bar one is led to the differential equation $$ y^{\mathrm{w}}-\lambda y=0 $$ $$ \begin{array}{l}{\text { where } y \text { is the transverse displacement and } \lambda=m \omega^{2} / E I ; m \text { is the mass per unit length of }} \\\ {\text { the rod, } E \text { is Young's modulus, } I \text { is the moment of inertia of the cross section about an }} \\ {\text { axis through the centroid perpendicular to the plane of vibration, and } \omega \text { is the frequency of }} \\ {\text { vibration. Thus for a bar whose material and geometric properties are given, the eigenvalues }} \\ {\text { determine the natural frequencies of vibration. Boundary conditions at each end are usually }} \\ {\text { one of the following types: }}\end{array} $$ $$ \begin{aligned} y=y^{\prime} &=0, \quad \text { clamped end } \\ y=y^{\prime \prime} &=0, \quad \text { simply supported or hinged end, } \\ y^{\prime \prime}=y^{\prime \prime \prime} &=0, \quad \text { free end } \end{aligned} $$ $$ \begin{array}{l}{\text { For each of the following three cases find the form of the eigenfunctions and the equation }} \\ {\text { satisfied by the eigenvalues of this fourth order boundary value problem. Determine } \lambda_{1} \text { and }} \\ {\lambda_{2}, \text { the two eigenvalues of smallest magnitude. Assume that the eigenvalues are real and }} \\ {\text { positive. }}\end{array} $$ $$ \begin{array}{ll}{\text { (a) } y(0)=y^{\prime \prime}(0)=0,} & {y(L)=y^{\prime \prime}(L)=0} \\ {\text { (b) } y(0)=y^{\prime \prime}(0)=0,} & {y(L)=y^{\prime \prime}(L)=0} \\ {\text { (c) } y(0)=y^{\prime}(0)=0,} & {y^{\prime \prime}(L)=y^{\prime \prime \prime}(L)=0 \quad \text { (cantilevered bar) }}\end{array} $$

Access millions of textbook solutions in one place

  • Access over 3 million high quality textbook solutions
  • Access our popular flashcard, quiz, mock-exam and notes features
  • Access our smart AI features to upgrade your learning
Get Vaia Premium now
Access millions of textbook solutions in one place

Recommended explanations on Math Textbooks