Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Problem 17

determine whether the given boundary value problem is self-adjoint. $$ \left(1+x^{2}\right) y^{\prime \prime}+2 x y^{\prime}+y=\lambda\left(1+x^{2}\right) y, \quad y(0)-y^{\prime}(1)=0, \quad y^{\prime}(0)+2 y(1)=0 $$

Problem 18

determine whether the given boundary value problem is self-adjoint. $$ y^{\prime \prime}+\lambda y=0, \quad y(0)=0, \quad y(\pi)+y^{\prime}(\pi)=0 $$

Problem 18

Using the method of Problem 17 , transform the problem $$ y^{\prime \prime}+2 y=2-4 x, \quad y(0)=1, \quad y(1)+y^{\prime}(1)=-2 $$ into a new problem in which the boundary conditions are homogeneous. Solve the latter problem by reference to Example 1 of the text.

Problem 19

Use eigenfunction expansions to find the solution of the given boundary value problem. $$ \begin{array}{ll}{u_{t}=u_{x x}-x,} & {u(0, t)=0, \quad u_{x}(1, t)=0, \quad u(x, 0)=\sin (\pi x / 2)} \\ {\text { see Problem } 2}\end{array} $$

Problem 19

Show that if the functions \(u\) and \(v\) satisfy \(\mathrm{Eqs}\). (2), and either \(a_{2}=0\) or \(b_{2}=0,\) or both, then $$ \left.p(x)\left[u^{\prime}(x) v(x)-u(x) v^{\prime}(x)\right]\right|_{0} ^{1}=0 $$

Problem 19

The differential equations in Problems 19 and 20 differ from those in previous problems in that the parameter \(\lambda\) multiplies the \(y^{\prime}\) term as well as the \(y\) term. In each of these problems determine the real eigenvalues and the corresponding eigenfunctions. $$ \begin{array}{l}{y^{\prime \prime}+y^{\prime}+\lambda\left(y^{\prime}+y\right)=0} \\ {y^{\prime}(0)=0, \quad y(1)=0}\end{array} $$

Problem 20

Use eigenfunction expansions to find the solution of the given boundary value problem. $$ \begin{array}{l}{u_{t}=u_{x x}+e^{-t}, \quad u_{x}(0, t)=0, \quad u_{x}(1, t)+u(1, t)=0, \quad u(x, 0)=1-x} \\ {\text { see Section } 11.2, \text { Problems } 10 \text { and } 12 .}\end{array} $$

Problem 20

In this problem we outline a proof of the first part of Theorem 11.2 .3 : that the eigenvalues of the Sturm-Liouville problem ( 1 ), (2) are simple. For a given \(\lambda\) suppose that \(\phi_{1}\) and \(\phi_{2}\) are two linearly independent eigenfunctions. Compute the Wronskian \(W\left(\phi_{1}, \phi_{2}\right)(x)\) and use the boundary conditions ( 2) to show that \(W\left(\phi_{1}, \phi_{2}\right)(0)=0 .\) Then use Theorems 3.3 .2 and 3.3 .3 to conclude that \(\phi_{1}\) and \(\phi_{2}\) cannot be linearly independent as assumed.

Problem 20

Differ from those in previous problems in that the parameter \(\lambda\) multiplies the \(y^{\prime}\) term as well as the \(y\) term. In each of these problems determine the real eigenvalues and the corresponding eigenfunctions. $$ \begin{array}{l}{x^{2} y^{\prime \prime}-\lambda\left(x y^{\prime}-y\right)=0} \\\ {y(1)=0, \quad y(2)-y^{\prime}(2)=0}\end{array} $$

Problem 21

Use eigenfunction expansions to find the solution of the given boundary value problem. $$ \begin{array}{l}{u_{t}=u_{x x}+1-|1-2 x|, \quad u(0, t)=0, \quad u(1, t)=0, \quad u(x, 0)=0} \\ {\text { see Problem } 5 .}\end{array} $$

Access millions of textbook solutions in one place

  • Access over 3 million high quality textbook solutions
  • Access our popular flashcard, quiz, mock-exam and notes features
  • Access our smart AI features to upgrade your learning
Get Vaia Premium now
Access millions of textbook solutions in one place

Recommended explanations on Math Textbooks