Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Problem 10

Let \(\phi_{1}, \phi_{2}, \ldots, \phi_{n}, \ldots\) be the normalized eigenfunctions of the Sturm-Liouville problem \((11),(12) .\) Show that if \(a_{n}\) is the \(n\) th Fourier coefficient of a square integrable function \(f,\) then \(\lim _{n \rightarrow \infty} a_{n}=0\) Hint: Use Bessel's inequality, Problem \(9(b)\).

Problem 10

Find the steady-state temperature \(u(\rho, \phi)\) in a sphere of unit radius if the temperature is independent of \(\theta\) and satisfies the boundary condition $$ u(1, \phi)=f(\phi), \quad 0 \leq \phi \leq \pi $$ Hint: Refer to Problem 9 and to Problems 22 through 29 of Section \(5.3 .\) Use the fact that the only solutions of Legendre's equation that are finite at both \(\pm 1\) are the Legendre polynomials.

Problem 10

Determine whether there is any value of the constant \(a\) for which the problem has a solution. Find the solution for each such value. $$ y^{\prime \prime}+\pi^{2} y=a+x, \quad y(0)=0, \quad y(1)=0 $$

Problem 11

Determine whether there is any value of the constant \(a\) for which the problem has a solution. Find the solution for each such value. $$ y^{\prime \prime}+4 \pi^{2} y=a+x, \quad y(0)=0, \quad y(1)=0 $$

Problem 11

Consider the general linear homogeneous second order equation $$ P(x) y^{\prime \prime}+Q(x) y^{\prime}+R(x) y=0 $$ $$ \begin{array}{l}{\text { We seck an integrating factor } \mu(x) \text { such that, upon multiplying Eq. (i) by } \mu(x) \text { , the resulting }} \\\ {\text { equation can be written in the form }}\end{array} $$ $$ \left[\mu(x) P(x) y^{\prime}\right]+\mu(x) R(x) y=0 $$ $$ \text { (a) By equating coefficients of } y \text { , show that } \mu \text { must be a solution of } $$ $$ P \mu^{\prime}=\left(Q-P^{\prime}\right) \mu $$ $$ \text { (b) Solve Eq. (iii) and thereby show that } $$ $$ \mu(x)=\frac{1}{P(x)} \exp \int_{x_{0}}^{\pi} \frac{Q(s)}{P(s)} d s $$ $$ \text { Compare this result with that of Problem } 27 \text { in Section } 3.2 . $$

Problem 12

In each of Problems 12 through 15 use the method of Problem 11 to transform the given equation into the form \(\left[p(x) y^{\prime}\right]'+q(x) y=0\) $$ y^{\prime \prime}-2 x y^{\prime}+\lambda y=0, \quad \text { Hermite equation } $$

Problem 12

Let \(\phi_{1}, \phi_{2}, \ldots, \phi_{n}, \ldots\) be the normalized eigenfunctions of the Sturm-Liouville problem \((11),(12) .\) Show that the series $$ \phi_{1}(x)+\frac{\phi_{2}(x)}{\sqrt{2}}+\cdots+\frac{\phi_{n}(x)}{\sqrt{n}}+\cdots $$ is not the eigenfunction series for any square integrable function. Hint: Use Bessel's inequality, Problem \(9(b) .\)

Problem 12

Determine whether there is any value of the constant \(a\) for which the problem has a solution. Find the solution for each such value. $$ y^{\prime \prime}+\pi^{2} y=a, \quad y^{\prime}(0)=0, \quad y^{\prime}(1)=0 $$

Problem 13

Determine whether there is any value of the constant \(a\) for which the problem has a solution. Find the solution for each such value. $$ y^{\prime \prime}+\pi^{2} y=a-\cos \pi x, \quad y(0)=0, \quad y(1)=0 $$

Problem 13

Use the method of Problem 11 to transform the given equation into the form \(\left[p(x) y^{\prime}\right]'+q(x) y=0\) $$ x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-v^{2}\right) y=0, \quad \text { Bessel equation } $$

Access millions of textbook solutions in one place

  • Access over 3 million high quality textbook solutions
  • Access our popular flashcard, quiz, mock-exam and notes features
  • Access our smart AI features to upgrade your learning
Get Vaia Premium now
Access millions of textbook solutions in one place

Recommended explanations on Math Textbooks