Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Problem 22

The motion of a circular elastic membrane, such as a drumhead, is governed by the two-dimensional wave equation in polar coordinates $$ u_{r r}+(1 / r) u_{r}+\left(1 / r^{2}\right) u_{\theta \theta}=a^{-2} u_{t t} $$ Assuming that \(u(r, \theta, t)=R(r) \Theta(\theta) T(t),\) find ordinary differential equations satisfied by \(R(r), \Theta(\theta),\) and \(T(t) .\)

Problem 22

Find the required Fourier series for the given function and sketch the graph of the function to which the series converges over three periods. $$ f(x)=L-x, \quad 0

Problem 23

The total energy \(E(t)\) of the vibrating string is given as a function of time by $$ E(t)=\int_{0}^{L}\left[\frac{1}{2} \rho u_{t}^{2}(x, t)+\frac{1}{2} T u_{x}^{2}(x, t)\right] d x ; $$ the first term is the kinetic energy due to the motion of the string, and the second term is the potential energy created by the displacement of the string away from its equilibrium position. For the displacement \(u(x, t)\) given by Eq. \((20),\) that is, for the solution of the string problem with zero initial velocity, show that $$ E(t)=\frac{\pi^{2} T}{4 L} \sum_{n=1}^{\infty} n^{2} c_{n}^{2} $$ Note that the right side of Eq. (ii) does not depend on \(t .\) Thus the total energy \(E\) is a constant, and therefore is conserved during the motion of the string. Hint: Use Parseval's equation (Problem 37 of Section 10.4 and Problem 17 of Section \(10.3)\), and recall that \(a^{2}=T / \rho .\)

Problem 23

The heat conduction equation in two space dimensions may be expressed in terms of polar coordinates as $$ \alpha^{2}\left[u_{r r}+(1 / r) u_{r}+\left(1 / r^{2}\right) u_{\theta \theta}\right]=u_{t} $$ Assuming that \(u(r, \theta, t)=R(r) \Theta(\theta) T(t),\) find ordinary differential equations satisfied by \(R(r), \Theta(\theta),\) and \(T(t) .\)

Problem 23

In each of Problems 19 through 24 : (a) Sketch the graph of the given function for three periods. (b) Find the Fourier series for the given function. (c) Plot \(s_{m}(x)\) versus \(x\) for \(m=5,10\), and 20 . (d) Describe how the Fourier series seems to be converging. $$ f(x)=\left\\{\begin{array}{lr}{-\frac{1}{2} x,} & {-2 \leq x < 0,} \\ {2 x-\frac{1}{2} x^{2},} & {0 \leq x < 2 ;}\end{array} \quad f(x+4)=f(x)\right. $$

Problem 24

(a) Find the required Fourier series for the given function. (b) Sketch the graph of the function to which the series converges for three periods. (c) Plot one or more partial sums of the series. $$ f(x)=-x, \quad-\pi

Problem 25

(a) Find the required Fourier series for the given function. (b) Sketch the graph of the function to which the series converges for three periods. (c) Plot one or more partial sums of the series. $$ f(x)=2-x^{2}, \quad 0

Problem 26

(a) Find the required Fourier series for the given function. (b) Sketch the graph of the function to which the series converges for three periods. (c) Plot one or more partial sums of the series. $$ f(x)=x^{2}-2 x, \quad 0

Problem 27

Suppose that \(g\) is an integrable periodic function with period \(T\) (a) If \(0 \leq a \leq T,\) show that $$\int_{0}^{T} g(x) d x=\int_{a}^{a+T} g(x) d x$$ Hint: Show first that \(\int_{0}^{a} g(x) d x=\int_{T}^{a+T} g(x) d x .\) Consider the change of variable \(s=\) \(x-T\) in the second integral. (b) Show that for any value of \(a,\) not necessarily in \(0 \leq a \leq T\) $$\int_{0}^{T} g(x) d x=\int_{a}^{a+T} g(x) d x$$ (c) Show that for any values of \(a\) and \(b\), $$\int_{a}^{a+T} g(x) d x=\int_{b}^{b+T} g(x) d x$$

Problem 27

In each of Problems 27 through 30 a function is given on an interval \(0

Access millions of textbook solutions in one place

  • Access over 3 million high quality textbook solutions
  • Access our popular flashcard, quiz, mock-exam and notes features
  • Access our smart AI features to upgrade your learning
Get Vaia Premium now
Access millions of textbook solutions in one place

Recommended explanations on Math Textbooks