Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Problem 37

Assume that \(f\) has a Fourier sine series $$ f(x)=\sum_{n=1}^{\infty} b_{n} \sin (n \pi x / L), \quad 0 \leq x \leq L $$ (a) Show formally that $$ \frac{2}{L} \int_{0}^{L}[f(x)]^{2} d x=\sum_{n=1}^{\infty} b_{n}^{2} $$ This relation was discovered by Euler about \(1735 .\)

Problem 38

More Specialized Fourier Scries. Let \(f\) be a function originally defined on \(0 \leq x \leq L\). In this section we have shown that it is possible to represent \(f\) either by a sine series or by a cosine series by constructing odd or even periodic extensions of \(f,\) respectively. Problems 38 through 40 concern some other more specialized Fourier series that converge to the given function \(f\) on \((0, L) .\) $$ \begin{array}{l}{\text { Let } f \text { be extended into }(L, 2 L] \text { in an arbitrary manner. Then extend the resulting function }} \\ {\text { into }(-2 L, 0) \text { as an odd function and elsewhere as a periodic function of period } 4 L \text { (see }} \\ { \text { Figure }10.4 .6) . \text { Show that this function has a Fourier sine series in terms of the functions }} \\\ {\sin (n \pi x / 2 L), n=1,2,3, \ldots . \text { that is, }}\end{array} $$ $$ f(x)=\sum_{n=1}^{\infty} b_{n} \sin (n \pi x / 2 L) $$ where $$ b_{n}=\frac{1}{L} \int_{0}^{2 L} f(x) \sin (n \pi x / 2 L) d x $$ $$ \text { This series converges to the original function on }(0, L) $$ (Figure cant copy)

Problem 39

Let \(f\) first be extended into \((L, 2 L)\) so that it is symmetric about \(x=L ;\) that is, so as to satisfy \(f(2 L-x)=f(x)\) for \(0 \leq x

Problem 40

How should \(f,\) originally defined on \([0, L],\) be extended so as to obtain a Fourier series involving only the functions \(\cos (\pi x / 2 L), \cos (3 \pi x / 2 L), \cos (5 \pi x / 2 L) \ldots .7\) Refer to Problems 38 and \(39 .\) If \(f(x)=x\) for \(0 \leq x \leq L,\) sketch the function to which the Fourier series converges for \(-4 L \leq x \leq 4 L .\)

Access millions of textbook solutions in one place

  • Access over 3 million high quality textbook solutions
  • Access our popular flashcard, quiz, mock-exam and notes features
  • Access our smart AI features to upgrade your learning
Get Vaia Premium now
Access millions of textbook solutions in one place

Recommended explanations on Math Textbooks