Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Chapter 5: Induction and Recursion

Q61 E

Page 360

Find the value of \({\log ^*}n\) for these values of n.

  1. \(2\)
  2. \(4\)
  3. \(8\)
  4. \(16\)
  5. \(256\)
  6. \(65536\)
  7. \({2^{2048}}\)

Q62E

Page 358

Find the largest integer n such that \({\log ^*}n = 5\). Determine the number of decimal digits in this number.

Q62SE

Page 379

Use induction to show that if\({\bf{x}}\)is a balanced string of parentheses, then the number of left parentheses equals the number of right parentheses in\({\bf{x}}\). Define the function\({\bf{N}}\)on the set of strings of parentheses by

\(\begin{aligned}{l}{\bf{N}}\left( {\bf{\lambda }} \right){\bf{ = 0,N(() &= 1,N()) &= - 1,}}\\{\bf{N}}\left( {{\bf{uv}}} \right){\bf{ = N}}\left( {\bf{u}} \right){\bf{ + N}}\left( {\bf{v}} \right){\bf{,}}\end{aligned}\)

Where\({\bf{\lambda }}\)is the empty string, and\({\bf{u}}\)and\({\bf{v}}\)are strings. It can be shown that\({\bf{N}}\)is well defined.

Q63E

Page 360

Exercises 63–65 deal with values of iterated functions. Suppose that \(f\left( n \right)\) is a function from the set of real numbers, or positive real numbers, or some other set of real numbers, to the set of real numbers such that \(f\left( n \right)\) is monotonically increasing (that is, \(f\left( n \right) < f\left( m \right)\) when \(n < m\)) and \(f\left( n \right) < n\) for all n in the domain of f.) The function \({f^{\left( k \right)}}\left( n \right)\) is defined recursively by

\({f^{\left( k \right)}}\left( n \right) = \left\{ \begin{aligned}{l}n\,\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;{\rm{if}}\;k = 0\\f\left( {{f^{\left( {k - 1} \right)}}\left( n \right)} \right)\;\;\;{\rm{if}}\;k > 0\end{aligned} \right.\)

Furthermore, let c be a positive real number. The iterated function \(f_c^*\) is the number of iterations of f required to reduce its argument to c or less, so \(f_c^*\left( n \right)\) is the smallest nonnegative integer k such that \({f^{\left( k \right)}}\left( n \right) \le c\).

Let \(f\left( n \right) = n - a\), where a is a positive integer. Find a formula for \({f^{\left( k \right)}}\left( n \right)\). What is the value of \(f_0^*\left( n \right)\) when n is a positive integer?

Q63SE

Page 379

Find

(a)\({\bf{N((}}\;{\bf{))}}\).

(b)\({\bf{N(}}\;{\bf{)))(}}\;{\bf{))((}}\;{\bf{)}}\).

(c)\({\bf{N(((}}\;{\bf{)((}}\;{\bf{))}}\).

(d)\({\bf{N(}}\;{\bf{)(((}}\;{\bf{)))((}}\;{\bf{)))}}\).

Q64E

Page 360

Exercises 63–65 deal with values of iterated functions. Suppose that \(f\left( n \right)\) is a function from the set of real numbers, or positive real numbers, or some other set of real numbers, to the set of real numbers such that \(f\left( n \right)\) is monotonically increasing (that is, \(f\left( n \right) < f\left( m \right)\) when \(n < m\)) and \(f\left( n \right) < n\) for all n in the domain of f.) The function \({f^{\left( k \right)}}\left( n \right)\) is defined recursively by

\({f^{\left( k \right)}}\left( n \right) = \left\{ \begin{aligned}{l}n\,\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;{\rm{if}}\;k = 0\\f\left( {{f^{\left( {k - 1} \right)}}\left( n \right)} \right)\;\;\;{\rm{if}}\;k > 0\end{aligned} \right.\)

Furthermore, let c be a positive real number. The iterated function \(f_c^*\) is the number of iterations of f required to reduce its argument to c or less, so \(f_c^*\left( n \right)\) is the smallest nonnegative integer k such that \({f^{\left( k \right)}}\left( n \right) \le c\).

Let \(f\left( n \right) = {n \mathord{\left/

{\vphantom {n 2}} \right.

\kern-\nulldelimiterspace} 2}\). Find a formula for \({f^{\left( k \right)}}\left( n \right)\). What is the value of \(f_1^ * \left( n \right)\) when n is a positive integer?

Q65E

Page 360

Exercises 63–65 deal with values of iterated functions. Suppose that \(f\left( n \right)\) is a function from the set of real numbers, or positive real numbers, or some other set of real numbers, to the set of real numbers such that \(f\left( n \right)\) is monotonically increasing (that is, \(f\left( n \right) < f\left( m \right)\) when \(n < m\)) and \(f\left( n \right) < n\) for all n in the domain of f.) The function \({f^{\left( k \right)}}\left( n \right)\) is defined recursively by

\({f^{\left( k \right)}}\left( n \right) = \left\{ \begin{aligned}{l}n\,\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;{\rm{if}}\;k = 0\\f\left( {{f^{\left( {k - 1} \right)}}\left( n \right)} \right)\;\;\;{\rm{if}}\;k > 0\end{aligned} \right.\)

Furthermore, let c be a positive real number. The iterated function \(f_c^*\) is the number of iterations of f required to reduce its argument to c or less, so \(f_c^*\left( n \right)\) is the smallest nonnegative integer k such that \({f^{\left( k \right)}}\left( n \right) \le c\).

Let \(f\left( n \right) = \sqrt n \). Find a formula for \({f^{\left( k \right)}}\left( n \right)\). What is the value of \(f_2^ * \left( n \right)\) when n is a positive integer?

Q65SE

Page 379

Give a recursive algorithm for finding all balanced strings of parentheses containing n or fewer symbols.

\(\)

Q66SE

Page 379

Give a recursive algorithm for finding\({\bf{gcd}}\left( {{\bf{a,b}}} \right)\), where\({\bf{a}}\)and\({\bf{b}}\)are nonnegative integers not both zero, based on these facts:\({\bf{gcd}}\left( {{\bf{a,b}}} \right){\bf{ = gcd}}\left( {{\bf{b,a}}} \right)\)if\({\bf{a > b}}\),\({\bf{gcd}}\left( {{\bf{0,b}}} \right){\bf{ = b,gcd}}\left( {{\bf{a,b}}} \right){\bf{ = 2gcd}}\left( {{\bf{a/2,b/2}}} \right)\))if a and b are even,\({\bf{gcd}}\left( {{\bf{a,b}}} \right){\bf{ = gcd}}\left( {{{\bf{a}} \mathord{\left/

{\vphantom {{\bf{a}} {\bf{2}}}} \right.

\kern-\nulldelimiterspace} {\bf{2}}}{\bf{,b}}} \right)\)if a is even and b is odd, and\({\bf{gcd}}\left( {{\bf{a,b}}} \right){\bf{ = gcd}}\left( {{\bf{a,b - a}}} \right)\).

\(\)

Q67SE

Page 379

Verify the program segment

If\({\bf{x > y}}\)then

\({\bf{x}}: = {\bf{y}}\)with respect to the initial assertion\({\bf{T}}\)and the final assertion\({\bf{x}} \le {\bf{y}}\).

\(\)

Access millions of textbook solutions in one place

  • Access over 3 million high quality textbook solutions
  • Access our popular flashcard, quiz, mock-exam and notes features
  • Access our smart AI features to upgrade your learning
Get Vaia Premium now
Access millions of textbook solutions in one place

Recommended explanations on Math Textbooks