Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Chapter 5: Induction and Recursion

Q58E

Page 360

Show that each of these proposed recursive definitions of a function on the set of positive integer, does not produce a well-defined function.

a)\({\bf{F}}\left( {\bf{n}} \right){\bf{ = 1 + F}}\left( {\left\lfloor {{\bf{n/2}}} \right\rfloor } \right)\;{\bf{for}}\;{\bf{n}} \ge {\bf{1}}\;{\bf{and}}\;{\bf{F}}\left( {\bf{1}} \right){\bf{ = 1}}{\bf{.}}\)

b)\({\bf{F}}\left( {\bf{n}} \right){\bf{ = 1 + F}}\left( {{\bf{n - 3}}} \right)\;{\bf{for}}\;{\bf{n}} \ge {\bf{2,}}\;{\bf{F}}\left( {\bf{1}} \right){\bf{ = 2,}}\;{\bf{and}}\;{\bf{F}}\left( {\bf{2}} \right){\bf{ = 3}}{\bf{.}}\)

c)\({\bf{F}}\left( {\bf{n}} \right){\bf{ = 1 + F}}\left( {{\bf{n/2}}} \right)\;{\bf{for}}\;{\bf{n}} \ge {\bf{2,}}\;{\bf{F}}\left( {\bf{1}} \right){\bf{ = 1,}}\;{\bf{and}}\;{\bf{F}}\left( {\bf{2}} \right){\bf{ = 2}}{\bf{.}}\)

d)\({\bf{F}}\left( {\bf{n}} \right){\bf{ = 1 + F}}\left( {{\bf{n/2}}} \right)\;{\bf{if}}\;{\bf{n}}\;{\bf{is}}\;{\bf{even}}\;{\bf{and}}\;{\bf{n}} \ge {\bf{2,}}\;{\bf{F}}\left( {\bf{n}} \right){\bf{ = 1 - F}}\left( {{\bf{n - 1}}} \right)\;{\bf{if}}\;{\bf{n}}\;{\bf{is}}\;{\bf{odd,}}\;{\bf{F}}\left( {\bf{1}} \right){\bf{ = 1}}{\bf{.}}\)

e)\(\begin{aligned}{l}{\bf{F}}\left( {\bf{n}} \right){\bf{ = 1 + F}}\left( {{\bf{n/2}}} \right)\;{\bf{if}}\;{\bf{n}}\;{\bf{is}}\;{\bf{even}}\;{\bf{and}}\;{\bf{n}} \ge {\bf{2,}}\;\\{\bf{F}}\left( {\bf{n}} \right){\bf{ = F}}\left( {{\bf{3n - 1}}} \right)\;{\bf{if}}\;{\bf{n}}\;{\bf{is}}\;{\bf{odd}}\;{\bf{and}}\;{\bf{n}} \ge {\bf{3,}}\;{\bf{and}}\;{\bf{F}}\left( {\bf{1}} \right){\bf{ = 1}}{\bf{.}}\end{aligned}\)

Q59E

Page 360

Show that each of these proposed recursive definitions of a function on the set of positive integers does not produce a well-defined function.

F(n)=1+F(n+1/2)forn1andF(1)=1F(n)=1+F(n2)forn2, andF(1)=0F(n)=1+F(n/3)forn3,F(1)=1,F(2)=2andF(3)=3F(n)=1+F(n/2)ifnis even andn2F(n)=1+F(n2)ifnis odd,F(1)=1F(n)=1+F(F(n1))ifn2andF(1)=2

Q5E

Page 342

(a) Determine which amounts of postage can be formed using just 4-cent and 11-cent stamps.

(b) Prove your answer to (a) using the principle of mathematical induction. Be sure to state explicitly your inductive hypothesis in the inductive step.

(c) Prove your answer to (a) using strong induction. How does the inductive hypothesis in this proof differ from that in the inductive hypothesis for a proof using mathematical induction?

Q5E

Page 370

Trace Algorithm 4 when it is given m = 5 , n = 11 , and b = 3 as input. That is, show all the steps Algorithm 4 uses to find 3 mod 5 .

Q5E

Page 377

Devise a rule of inference for verification of partial correctness of statements of the form

ifcondition1thenS1elseifcondition2thenS2elseSnwhereS1,S2,.......,Snareblocks

Q5E

Page 329

Prove that12+32+52++(2n+1)2=(n+1)(2n+1)(2n+3)/3 whenever nis a nonnegative integer

Q5RE

Page 378

a) State the well-ordering property for the set of positive integers.

b) Use this property to show that every positive integer greater than one can be written as the product of primes.

Q5SE

Page 379

Use mathematical induction to show that \[\frac{1}{{1 \cdot 4}} + \frac{1}{{4 \cdot 7}} + ... + \frac{1}{{\left( {3n - 2} \right)\left( {3n + 1} \right)}} = \frac{n}{{3n + 1}}\] whenever nis a positive integer.

Q60E

Page 360

Find these values.

log(2)16log(3)256log(3)265536log(4)2265536

Q61E

Page 360

Find the value of \({\log ^*}n\) for these values of n.

  1. \(2\)
  2. \(4\)
  3. \(8\)
  4. \(16\)
  5. \(256\)
  6. \(65536\)
  7. \({2^{2048}}\)

Access millions of textbook solutions in one place

  • Access over 3 million high quality textbook solutions
  • Access our popular flashcard, quiz, mock-exam and notes features
  • Access our smart AI features to upgrade your learning
Get Vaia Premium now
Access millions of textbook solutions in one place

Recommended explanations on Math Textbooks