Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Problem 5

Assuming a framing protocol that uses bit stuffing, show the bit sequence transmitted over the link when the frame contains the following bit sequence: 110101111101011111101011111110 Mark the stuffed bits.

Problem 8

Suppose you want to send some data using the BISYNC framing protocol, and the last 2 bytes of your data are DLE and ETX. What sequence of bytes would be transmitted immediately prior to the CRC?

Problem 10

Assume that a SONET receiver resynchronizes its clock whenever a 1 bit appears; otherwise, the receiver samples the signal in the middle of what it believes is the bit's time slot. (a) What relative accuracy of the sender's and receiver's clocks is required in order to receive correctly 480 bytes (one ATM AAL. 5 cell's worth) in a row? (b) Consider a forwarding station A on a SONET STS-1 line, receiving frames from the downstream end \(B\) and retransmitting them upstream. What relative accuracy of A's and B's clocks is required to keep A from accumulating more than one extra frame per minute?

Problem 13

Show that two-dimensional parity provides the receiver enough information to correct any 1-bit error (assuming the receiver knows only 1 bit is bad), but not any 2 -bit error.

Problem 16

Suppose that one byte in a buffer covered by the Internet checksum algorithm needs to be decremented (e.g., a header hop count field). Give an algorithm to compute the revised checksum without rescanning the entire buffer. Your algorithm should consider whether the byte in question is low order or high order.

Problem 18

Suppose we want to transmit the message 11001001 and protect it from errors using the CRC polynomial \(x^{3}+1\) (a) Use polynomial long division to determine the message that should be transmitted. (b) Suppose the leftmost bit of the message is inverted due to noise on the transmission link. What is the result of the receiver's CRC calculation? How does the receiver know that an error has occurred?

Problem 19

Suppose we want to transmit the message 1011001001001011 and protect it from errors using the CRC-8 polynomial \(x^{8}+x^{2}+x^{1}+1\). (a) Use polynomial long division to determine the message that should be transmitted. (b) Suppose the leftmost bit of the message is inverted due to noise on the transmission link. What is the result of the receiver's CRC calculation? How does the receiver know that an error has occurred?

Problem 21

With 1 parity bit we can detect all 1-bit errors. Show that at least one generalization fails, as follows: (a) Show that if messages \(m\) are 8 bits long, then there is no error detection code \(e=e(m)\) of size 2 bits that can detect all 2-bit errors. Hint: Consider the set \(M\) of all 8-bit messages with a single 1 bit; note that any message from \(M\) can be transmuted into any other with a 2 -bit error, and show that some pair of messages \(m_{1}\) and \(m_{2}\) in \(M\) must have the same error code \(e\). (b) Find an \(N\) (not necessarily minimal) such that no 32 -bit error detection code applied to N-bit blocks can detect all errors altering up to 8 bits.

Problem 22

Consider an ARQ protocol that uses only negative acknowledgments (NAKs), but no positive acknowledgments (ACKs). Describe what timeouts would need to be scheduled. Explain why an ACK-based protocol is usually preferred to a NAK- based protocol.

Problem 23

Consider an ARQ algorithm running over a \(20-\mathrm{km}\) point-to-point fiber link. (a) Compute the propagation delay for this link, assuming that the speed of light is \(2 \times 10^{8} \mathrm{~m} / \mathrm{s}\) in the fiber. (b) Suggest a suitable timeout value for the ARQ algorithm to use. (c) Why might it still be possible for the ARQ algorithm to time out and retransmit a frame, given this timeout value?

Access millions of textbook solutions in one place

  • Access over 3 million high quality textbook solutions
  • Access our popular flashcard, quiz, mock-exam and notes features
  • Access our smart AI features to upgrade your learning
Get Vaia Premium now
Access millions of textbook solutions in one place

Recommended explanations on Computer Science Textbooks