Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Problem 24

Suppose you are designing a sliding window protocol for a 1-Mbps point-to- point link to the moon, which has a one-way latency of \(1.25\) seconds. Assuming that each frame carries \(1 \mathrm{~KB}\) of data, what is the minimum number of bits you need for the sequence number?

Problem 25

Suppose you are designing a sliding window protocol for a 1-Mbps point-to- point link to a stationary satellite revolving around the earth at \(3 \times 10^{4} \mathrm{~km}\) altitude. Assuming that each frame carries \(1 \mathrm{~KB}\) of data, what is the minimum number of bits you need for the sequence number in the following cases? Assume the speed of light is \(3 \times 10^{8} \mathrm{~m} / \mathrm{s}\). (a) \(\mathrm{RWS}=1\) (b) RWS = SWS

Problem 26

The text suggests that the sliding window protocol can be used to implement flow control. We can imagine doing this by having the receiver delay ACKs, that is, not send the ACK until there is free buffer space to hold the next frame. In doing so, each ACK would simultaneously acknowledge the receipt of the last frame and tell the source that there is now free buffer space available to hold the next frame. Explain why implementing flow control in this way is not a good idea.

Problem 28

In stop-and-wait transmission, suppose that both sender and receiver retransmit their last frame immediately on receipt of a duplicate ACK or data frame; such a strategy is superficially reasonable because receipt of such a duplicate is most likely to mean the other side has experienced a timeout. (a) Draw a timeline showing what will happen if the first data frame is somehow duplicated, but no frame is lost. How long will the duplications continue? This situation is known as the Sorcerer's Apprentice bug. (b) Suppose that, like data, ACKs are retransmitted if there is no response within the timeout period. Suppose also that both sides use the same timeout interval. Identify a reasonably likely scenario for triggering the Sorcerer's Apprentice bug.

Problem 29

Give some details of how you might augment the sliding window protocol with flow control by having ACKs carry additional information that reduces the SWS as the receiver runs out of buffer space. Illustrate your protocol with a timeline for a transmission; assume the initial sWS and RWS are 4, the link speed is instantaneous, and the receiver can free buffers at the rate of one per second (i.e., the receiver is the bottleneck). Show what happens at \(T=0, T=1, \ldots, T=4 \mathrm{sec}-\) onds.

Problem 30

Describe a protocol combining the sliding window algorithm with selective ACKs. Your protocol should retransmit promptly, but not if a frame simply arrives one or two positions out of order. Your protocol should also make explicit what happens if several consecutive frames are lost.

Problem 32

Draw a timeline diagram for the sliding window algorithm with SWS = RWS = 4 frames for the following two situations. Assume the receiver sends a duplicate acknowledgement if it does not receive the expected frame. For example, it sends DUPACK[2] when it expects to see FRAME[2] but receives FRAME[3] instead. Also, the receiver sends a cumulative acknowledgment after it receives all the outstanding frames. For example, it sends ACK[5] when it receives the lost frame FRAME[2] after it already received FRAME[3], FRAME[4], and FRAME[5]. Use a timeout interval of about \(2 \times\) RTT. (a) Frame 2 is lost. Retransmission takes place upon timeout (as usual). (b) Frame 2 is lost. Retransmission takes place either upon receipt of the first DUPACK or upon timeout. Does this scheme reduce the transaction time? Note that some end-to-end protocols (e.g., variants of TCP) use a similar scheme for fast retransmission.

Problem 33

Suppose that we attempt to run the sliding window algorithm with SWS = RWS = 3 and with MaxSeqNum \(=5 .\) The Nth packet DATA[ \(N]\) thus actually contains \(N\) mod 5 in its sequence number field. Give an example in which the algorithm becomes confused; that is, a scenario in which the receiver expects DATA[5] and accepts DATA[0]-which has the same transmitted sequence number-in its stead. No packets may arrive out of order. Note this implies MaxSeqNum \(\geq 6\) is necessary as well as sufficient.

Problem 39

Why is it important for protocols configured on top of the Ethernet to have a length field in their header, indicating how long the message is?

Problem 40

What kinds of problems can arise when two hosts on the same Ethernet share the same hardware address? Describe what happens and why that behavior is a problem.

Access millions of textbook solutions in one place

  • Access over 3 million high quality textbook solutions
  • Access our popular flashcard, quiz, mock-exam and notes features
  • Access our smart AI features to upgrade your learning
Get Vaia Premium now
Access millions of textbook solutions in one place

Recommended explanations on Computer Science Textbooks