Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Problem 3

Use a Web search tool to locate useful, general, and noncommercial information about the following topics: MBone, ATM, MPEG, IPv6, and Ethernet.

Problem 4

The Unix utility whois can be used to find the domain name corresponding to an organization, or vice versa. Read the man page documentation for whois and experiment with it. Try whois princeton.edu and whois princeton, for starters.

Problem 5

Calculate the total time required to transfer a \(1000-\mathrm{KB}\) file in the following cases, assuming an RTT of \(100 \mathrm{~ms}\), a packet size of \(1 \mathrm{~KB}\) and an initial \(2 \times\) RTT of "handshaking" before data is sent. (a) The bandwidth is \(1.5 \mathrm{Mbps}\), and data packets can be sent continuously. (b) The bandwidth is \(1.5 \mathrm{Mbps}\), but after we finish sending each data packet we must wait one RTT before sending the next. (c) The bandwidth is "infinite," meaning that we take transmit time to be zero, and up to 20 packets can be sent per RTT. (d) The bandwidth is infinite, and during the first RTT we can send one packet \(\left(2^{1-1}\right)\), during the second RTT we can send two packets \(\left(2^{2-1}\right)\), during the third we can send four \(\left(2^{3-1}\right)\), and so on. (A justification for such an exponential increase will be given in Chapter \(6 .)\)

Problem 7

Consider a point-to-point link \(2 \mathrm{~km}\) in length. At what bandwidth would propagation delay (at a speed of \(2 \times 10^{8} \mathrm{~m} / \mathrm{s}\) ) equal transmit delay for 100 -byte packets? What about 512 -byte packets?

Problem 8

Consider a point-to-point link \(50 \mathrm{~km}\) in length. At what bandwidth would propagation delay (at a speed of \(2 \times 10^{8} \mathrm{~m} / \mathrm{s}\) ) equal transmit delay for 100 -byte packets? What about 512 -byte packets?

Problem 10

One property of addresses is that they are unique; if two nodes had the same address it would be impossible to distinguish between them. What other properties might be useful for network addresses to have? Can you think of any situations in which network (or postal or telephone) addresses might not be unique?

Problem 11

Give an example of a situation in which multicast addresses might be beneficial.

Problem 12

What differences in traffic patterns account for the fact that STDM is a costeffective form of multiplexing for a voice telephone network and FDM is a costeffective form of multiplexing for television and radio networks, yet we reject both as not being cost-effective for a general-purpose computer network?

Problem 13

How "wide" is a bit on a 1-Gbps link? How long is a bit in copper wire, where the speed of propagation is \(2.3 \times 10^{8} \mathrm{~m} / \mathrm{s}\) ?

Problem 14

How long does it take to transmit \(x\) KB over a \(y\)-Mbps link? Give your answer as a ratio of \(x\) and \(y\).

Access millions of textbook solutions in one place

  • Access over 3 million high quality textbook solutions
  • Access our popular flashcard, quiz, mock-exam and notes features
  • Access our smart AI features to upgrade your learning
Get Vaia Premium now
Access millions of textbook solutions in one place

Recommended explanations on Computer Science Textbooks