Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Problem 15

Suppose a 100-Mbps point-to-point link is being set up between Earth and a new lunar colony. The distance from the moon to Earth is approximately \(385,000 \mathrm{~km}\), and data travels over the link at the speed of light-3 \(\times 10^{8} \mathrm{~m} / \mathrm{s}\). (a) Calculate the minimum RTT for the link. (b) Using the RTT as the delay, calculate the delay \(\times\) bandwidth product for the link. (c) What is the significance of the delay \(\times\) bandwidth product computed in (b)? (d) A camera on the lunar base takes pictures of Earth and saves them in digital format to disk. Suppose Mission Control on Earth wishes to download the most current image, which is \(25 \mathrm{MB}\). What is the minimum amount of time that will elapse between when the request for the data goes out and the transfer is finished?

Problem 16

Suppose a 128-Kbps point-to-point link is set up between Earth and a rover on Mars. The distance from Earth to Mars (when they are closest together) is approximately \(55 \mathrm{Gm}\), and data travels over the link at the speed of light-3 \(\times 10^{8} \mathrm{~m} / \mathrm{s}\). (a) Calculate the minimum RTT for the link. (b) Calculate the delay \(\times\) bandwidth product for the link. (c) A camera on the rover takes pictures of its surroundings and sends these to Earth. How quickly after a picture is taken can it reach Mission Control on Earth? Assume that each image is \(5 \mathrm{Mb}\) in size.

Problem 17

For each of the following operations on a remote file server, discuss whether they are more likely to be delay sensitive or bandwidth sensitive. (a) Open a file. (b) Read the contents of a file. (c) List the contents of a directory. (d) Display the attributes of a file.

Problem 18

Calculate the latency (from first bit sent to last bit received) for the following: (a) 10-Mbps Ethernet with a single store-and-forward switch in the path, and a packet size of 5000 bits. Assume that each link introduces a propagation delay of \(10 \mu \mathrm{s}\) and that the switch begins retransmitting immediately after it has finished receiving the packet. (b) Same as (a) but with three switches. (c) Same as (a) but assume the switch implements "cut-through" switching: It is able to begin retransmitting the packet after the first 200 bits have been received.

Problem 19

Calculate the latency (from first bit sent to last bit received) for the following: (a) 1-Gbps Ethernet with a single store-and-forward switch in the path, and a packet size of 5000 bits. Assume that each link introduces a propagation delay of \(10 \mu \mathrm{s}\) and that the switch begins retransmitting immediately after it has finished receiving the packet. (b) Same as (a) but with three switches. (c) Same as (b) but assume the switch implements "cut-through" switching: It is able to begin retransmitting the packet after the first 128 bits have been received.

Problem 21

Calculate the bandwidth \(x\) delay product for the following links. Use one-way delay, measured from first bit sent to first bit received. (a) 10-Mbps Ethernet with a delay of \(10 \mu \mathrm{s}\). (b) 10-Mbps Ethernet with a single store-and-forward switch like that of Exercise \(18(\mathrm{a})\), packet size 5000 bits, and \(10 \mu\) ser link propagation delay. (c) \(1.5\)-Mbps T1 link, with a transcontinental one-way delay of \(50 \mathrm{~ms}\). (d) \(1.5-\mathrm{Mbps} \mathrm{T} 1\) link through a satellite in geosynchronous orbit, \(35,900 \mathrm{~km}\) high. The only delay is speed-of- light propagation delay.

Problem 23

Suppose a host has a 1-MB file that is to be sent to another host. The file takes 1 second of CPU time to compress \(50 \%\), or 2 seconds to compress \(60 \%\). (a) Calculate the bandwidth at which each compression option takes the same total compression + transmission time. (b) Explain why latency does not affect your answer.

Problem 24

Suppose that a certain communications protocol involves a per-packet overhead of 100 bytes for headers and framing. We send 1 million bytes of data using this protocol; however, one data byte is corrupted and the entire packet containing it is thus lost. Give the total number of overhead + loss bytes for packet data sizes of \(1000,5000,10,000\), and 20,000 bytes. Which size is optimal?

Problem 25

Assume you wish to transfer an \(n\)-byte file along a path composed of the source, destination, seven point-to-point links, and five switches. Suppose each link has a propagation delay of \(2 \mathrm{~ms}\), bandwidth of \(4 \mathrm{Mbps}\), and that the switches support both circuit and packet switching. Thus you can either break the file up into 1-KB packets, or set up a circuit through the switches and send the file as one contiguous bit stream. Suppose that packets have 24 bytes of packet header information and 1000 bytes of payload, that store-and-forward packet processing at each switch incurs a 1 -ms delay after the packet has been completely received, that packets may be sent continuously without waiting for acknowledgments, and that circuit setup requires a 1-KB message to make one round-trip on the path incurring a 1-ms delay at each switch after the message has been completely received. Assume switches introduce no delay to data traversing a circuit. You may also assume that file size is a multiple of 1000 bytes. (a) For what file size \(n\) bytes is the total number of bytes sent across the network less for circuits than for packets? (b) For what file size \(n\) bytes is the total latency incurred before the entire file arrives at the destination less for circuits than for packets? (c) How sensitive are these results to the number of switches along the path? To the bandwidth of the links? To the ratio of packet size to packet header size? (d) How accurate do you think this model of the relative merits of circuits and packets is? Does it ignore important considerations that discredit one or the other approach? If so, what are they?

Problem 26

Consider a closed-loop network (e.g., token ring) with bandwidth \(100 \mathrm{Mbps}\) and propagation speed of \(2 \times 10^{8} \mathrm{~m} / \mathrm{s}\). What would the circumference of the loop be to exactly contain one 250 -byte packet, assuming nodes do not introduce delay? What would the circumference be if there was a node every \(100 \mathrm{~m}\), and each node introduced 10 bits of delay?

Access millions of textbook solutions in one place

  • Access over 3 million high quality textbook solutions
  • Access our popular flashcard, quiz, mock-exam and notes features
  • Access our smart AI features to upgrade your learning
Get Vaia Premium now
Access millions of textbook solutions in one place

Recommended explanations on Computer Science Textbooks