Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Problem 114

A \(3.52-\mathrm{g}\) sample of ammonium nitrate \(\left(\mathrm{NH}_{4} \mathrm{NO}_{3}\right)\) was added to \(80.0 \mathrm{~mL}\) of water in a constant-pressure calorimeter of negligible heat capacity. As a result, the temperature of the solution decreased from \(21.6^{\circ} \mathrm{C}\) to \(18.1^{\circ} \mathrm{C} .\) Calculate the heat of solution \(\left(\Delta H_{\mathrm{soln}}\right)\) in \(\mathrm{kJ} / \mathrm{mol}:\) \(\mathrm{NH}_{4} \mathrm{NO}_{3}(s) \longrightarrow \mathrm{NH}_{4}^{+}(a q)+\mathrm{NO}_{3}^{-}(a q)\) Assume the specific heat of the solution is the same as that of water.

Problem 115

A quantity of \(50.0 \mathrm{~mL}\) of \(0.200 \mathrm{M} \mathrm{Ba}(\mathrm{OH})_{2}\) is mixed with \(50.0 \mathrm{~mL}\) of \(0.400 \mathrm{M} \mathrm{HNO}_{3}\) in a constant-pressure calorimeter having a heat capacity of \(496 \mathrm{~J} /{ }^{\circ} \mathrm{C}\). The initial temperature of both solutions is the same at \(22.4^{\circ} \mathrm{C}\). What is the final temperature of the mixed solution? Assume that the specific heat of the solutions is the same as that of water and the molar heat of neutralization is \(-56.2 \mathrm{~kJ} / \mathrm{mol}\).

Problem 117

Producer gas (carbon monoxide) is prepared by passing air over red-hot coke: \(\mathrm{C}(s)+\frac{1}{2} \mathrm{O}_{2}(g) \longrightarrow \mathrm{CO}(g)\) Water gas (a mixture of carbon monoxide and hydrogen) is prepared by passing steam over red-hot coke: \(\mathrm{C}(s)+\mathrm{H}_{2} \mathrm{O}(g) \longrightarrow \mathrm{CO}(g)+\mathrm{H}_{2}(g)\) For many years, both producer gas and water gas were used as fuels in industry and for domestic cooking. The large-scale preparation of these gases was carried out alternately; that is, first producer gas, then water gas, and so on. Using thermochemical reasoning, explain why this procedure was chosen.

Problem 118

Glauber's salt, sodium sulfate decahydrate \(\left(\mathrm{Na}_{2} \mathrm{SO}_{4} .\right.\) \(\left.10 \mathrm{H}_{2} \mathrm{O}\right),\) undergoes a phase transition (i.e., melting or freezing) at a convenient temperature of about \(32^{\circ} \mathrm{C}\) : \(\begin{aligned}{\mathrm{Na}_{2} \mathrm{SO}_{4} \cdot 10 \mathrm{H}_{2} \mathrm{O}(s) \longrightarrow \mathrm{Na}_{2} \mathrm{SO}_{4} \cdot 10 \mathrm{H}_{2} \mathrm{O}(l)}{\Delta H^{\circ}} &=74.4 \mathrm{~kJ} / \mathrm{mol} \end{aligned}\) As a result, this compound is used to regulate the temperature in homes. It is placed in plastic bags in the ceiling of a room. During the day, the endothermic melting process absorbs heat from the surroundings, cooling the room. At night, it gives off heat as it freezes. Calculate the mass of Glauber's salt in kilograms needed to lower the temperature of air in a room by \(8.2^{\circ} \mathrm{C}\). The mass of air in the room is \(605.4 \mathrm{~kg} ;\) the specific heat of air is \(1.2 \mathrm{~J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}\).

Problem 119

An excess of zinc metal is added to \(50.0 \mathrm{~mL}\) of a \(0.100 \mathrm{M} \mathrm{AgNO}_{3}\) solution in a constant-pressure calorimeter like the one pictured in Figure 5.8 . As a result of the reaction \(\mathrm{Zn}(s)+2 \mathrm{Ag}^{+}(a q) \longrightarrow \mathrm{Zn}^{2+}(a q)+2 \mathrm{Ag}(s)\) the temperature rises from \(19.25^{\circ} \mathrm{C}\) to \(22.17^{\circ} \mathrm{C}\). If the heat capacity of the calorimeter is \(98.6 \mathrm{~J} /{ }^{\circ} \mathrm{C},\) calculate the enthalpy change for the given reaction on a molar basis. Assume that the density and specific heat of the solution are the same as those for water, and ignore the specific heats of the metals.

Problem 120

A driver's manual states that the stopping distance quadruples as the speed doubles; that is, if it takes \(30 \mathrm{ft}\) to stop a car moving at \(25 \mathrm{mph}\), then it would take \(120 \mathrm{ft}\) to stop a car moving at \(50 \mathrm{mph}\). Justify this statement by using mechanics and the first law of thermodynamics. (Assume that when a car is stopped, its kinetic energy \(\left(\frac{1}{2} m u^{2}\right)\) is totally converted to heat.)

Problem 123

For reactions in condensed phases (liquids and solids), the difference between \(\Delta H\) and \(\Delta U\) is usually quite small. This statement holds for reactions carried out under atmospheric conditions. For certain geochemical processes, however, the external pressure may be so great that \(\Delta H\) and \(\Delta U\) can differ by a significant amount. A well-known example is the slow conversion of graphite to diamond under Earth's surface. Calculate \(\Delta H-\Delta U\) for the conversion of 1 mole of graphite to 1 mole of diamond at a pressure of 50,000 atm. The densities of graphite and diamond are \(2.25 \mathrm{~g} / \mathrm{cm}^{3}\) and \(3.52 \mathrm{~g} / \mathrm{cm}^{3},\) respectively.

Problem 124

Consider the reaction $$2 \mathrm{H}_{2}(g)+\mathrm{O}_{2}(g) \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}(l)$$ Under atmospheric conditions (1.00 atm) it was found that the formation of water resulted in a decrease in volume equal to \(73.4 \mathrm{~L}\). Calculate \(\Delta U\) for the process. \(\Delta H=-571.6 \mathrm{~kJ} / \mathrm{mol}\). (The conversion factor is \(1 \mathrm{~L} \cdot \mathrm{atm}=101.3 \mathrm{~J} .)\)

Problem 129

A 46-kg person drinks \(500 \mathrm{~g}\) of milk, which has a "caloric" value of approximately \(3.0 \mathrm{~kJ} / \mathrm{g}\). If only 17 percent of the energy in milk is converted to mechanical work, how high (in meters) can the person climb based on this energy intake?

Problem 130

A man ate 0.50 pound of cheese (an energy intake of \(4 \times 10^{3} \mathrm{~kJ}\) ). Suppose that none of the energy was stored in his body. What mass (in grams) of water would he need to perspire in order to maintain his original temperature? (It takes \(44.0 \mathrm{~kJ}\) to vaporize 1 mole of water.)

Access millions of textbook solutions in one place

  • Access over 3 million high quality textbook solutions
  • Access our popular flashcard, quiz, mock-exam and notes features
  • Access our smart AI features to upgrade your learning
Get Vaia Premium now
Access millions of textbook solutions in one place

Recommended explanations on Chemistry Textbooks