Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Problem 97

The enthalpy of combustion of benzoic acid \(\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}\right)\) is commonly used as the standard for calibrating constant-volume bomb calorimeters; its value has been accurately determined to be \(-3226.7 \mathrm{~kJ} / \mathrm{mol}\). When \(1.9862 \mathrm{~g}\) of benzoic acid are burned in a calorimeter, the temperature rises from \(21.84^{\circ} \mathrm{C}\) to \(25.67^{\circ} \mathrm{C}\). What is the heat capacity of the bomb? (Assume that the quantity of water surrounding the bomb is exactly \(2000 \mathrm{~g} .\) )

Problem 98

At \(25^{\circ} \mathrm{C}\), the standard enthalpy of formation of \(\mathrm{HF}(a q)\) is \(-320.1 \mathrm{~kJ} / \mathrm{mol} ;\) of \(\mathrm{OH}^{-}(a q),\) it is \(-229.6 \mathrm{~kJ} / \mathrm{mol} ;\) of \(\mathrm{F}^{-}(a q)\) it is \(-329.1 \mathrm{~kJ} / \mathrm{mol} ;\) and of \(\mathrm{H}_{2} \mathrm{O}(l),\) it is \(-285.8 \mathrm{~kJ} / \mathrm{mol}\). (a) Calculate the standard enthalpy of neutralization of \(\mathrm{HF}(a q)\) \(\mathrm{HF}(a q)+\mathrm{OH}^{-}(a q) \longrightarrow \mathrm{F}^{-}(a q)+\mathrm{H}_{2} \mathrm{O}(l)\) (b) Using the value of \(-56.2 \mathrm{~kJ}\) as the standard enthalpy change for the reaction \(\mathrm{H}^{+}(a q)+\mathrm{OH}^{-}(a q) \longrightarrow \mathrm{H}_{2} \mathrm{O}(l)\) calculate the standard enthalpy change for the reaction \(\mathrm{HF}(a q) \longrightarrow \mathrm{H}^{+}(a q)+\mathrm{F}^{-}(a q)\)

Problem 103

Ice at \(0^{\circ} \mathrm{C}\) is placed in a Styrofoam cup containing \(361 \mathrm{~g}\) of a soft drink at \(23^{\circ} \mathrm{C}\). The specific heat of the drink is about the same as that of water. Some ice remains after the ice and soft drink reach an equilibrium temperature of \(0^{\circ} \mathrm{C}\). Determine the mass of ice that has melted. Ignore the heat capacity of the cup.

Problem 104

A quantity of \(85.0 \mathrm{~mL}\) of \(0.600 \mathrm{M} \mathrm{HCl}\) is mixed with \(85.0 \mathrm{~mL}\) of \(0.600 \mathrm{M} \mathrm{KOH}\) in a constant- pressure calorimeter. The initial temperature of both solutions is the same at \(17.35^{\circ} \mathrm{C}\), and the final temperature of the mixed solution is \(19.02^{\circ} \mathrm{C}\). What is the heat capacity of the calorimeter? Assume that the specific heat of the solutions is the same as that of water and the molar heat of neutralization is \(-56.2 \mathrm{~kJ} / \mathrm{mol}\).

Problem 105

When \(1.034 \mathrm{~g}\) of naphthalene \(\left(\mathrm{C}_{10} \mathrm{H}_{8}\right)\) is burned in a constant-volume bomb calorimeter at \(298 \mathrm{~K}, 41.56 \mathrm{~kJ}\) of heat is evolved. Calculate \(\Delta U\) and \(w\) for the reaction on a molar basis.

Problem 106

From a thermochemical point of view, explain why a carbon dioxide fire extinguisher or water should not be used on a magnesium fire.

Problem 108

The combustion of \(0.4196 \mathrm{~g}\) of a hydrocarbon releases \(17.55 \mathrm{~kJ}\) of heat. The masses of the products are \(\mathrm{CO}_{2}=1.419 \mathrm{~g}\) and \(\mathrm{H}_{2} \mathrm{O}=0.290 \mathrm{~g}\). (a) What is the empirical formula of the compound? (b) If the approximate molar mass of the compound is \(76 \mathrm{~g} / \mathrm{mol}\), calculate its standard enthalpy of formation.

Problem 109

In a constant-pressure calorimetry experiment, a reaction gives off \(21.8 \mathrm{~kJ}\) of heat. The calorimeter contains \(150 \mathrm{~g}\) of water, initially at \(23.4^{\circ} \mathrm{C}\). What is the final temperature of the water? The heat capacity of the calorimeter is negligibly small.

Problem 111

Give an example for each of the following situations: (a) adding heat to a system raises its temperature, (b) adding heat to a system does not change its temperature, and (c) a system's temperature changes despite no heat being added to it or removed from it.

Problem 113

Construct a table with the headings \(q, w, \Delta U,\) and \(\Delta H\). For each of the following processes, deduce whether each of the quantities listed is positive \((+),\) negative (-), or zero (0): (a) freezing of benzene, (b) reaction of sodium with water, (c) boiling of liquid ammonia, (d) melting of ice, (e) expansion of a gas at constant temperature.

Access millions of textbook solutions in one place

  • Access over 3 million high quality textbook solutions
  • Access our popular flashcard, quiz, mock-exam and notes features
  • Access our smart AI features to upgrade your learning
Get Vaia Premium now
Access millions of textbook solutions in one place

Recommended explanations on Chemistry Textbooks