Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Problem 25

A gas expands in volume from 26.7 to \(89.3 \mathrm{~mL}\) at constant temperature. Calculate the work done (in joules) if the gas expands (a) against a vacuum, (b) against a constant pressure of \(1.5 \mathrm{~atm},\) and \((\mathrm{c})\) against a constant pressure of \(2.8 \mathrm{~atm} .(1 \mathrm{~L} \cdot \mathrm{atm}=101.3 \mathrm{~J})\).

Problem 26

A gas expands and does \(P V\) work on the surroundings equal to \(325 \mathrm{~J}\). At the same time, it absorbs \(127 \mathrm{~J}\) of heat from the surroundings. Calculate the change in energy of the gas.

Problem 27

The first step in the industrial recovery of zinc from the zinc sulfide ore is roasting; that is, the conversion of \(\mathrm{ZnS}\) to \(\mathrm{ZnO}\) by heating:$$\begin{aligned}2 \mathrm{ZnS}(s)+3 \mathrm{O}_{2}(g) \longrightarrow 2 \mathrm{ZnO}(s)+2 \mathrm{SO}_{2}(g) & \Delta H=-879 \mathrm{~kJ} / \mathrm{mol}\end{aligned}$$ Calculate the heat evolved (in kJ) per gram of \(\mathrm{ZnS}\) roasted.

Problem 28

Determine the amount of heat (in kJ) given off when \(1.26 \times 10^{4} \mathrm{~g}\) of \(\mathrm{NO}_{2}\) are produced according to the equation $$ \begin{array}{l} 2 \mathrm{NO}(g)+\mathrm{O}_{2}(g) \longrightarrow 2 \mathrm{NO}_{2}(g) \\ \qquad \Delta H=-114.6 \mathrm{~kJ} / \mathrm{mol} \end{array} $$

Problem 29

Consider the reaction $$\begin{aligned}2 \mathrm{H}_{2} \mathrm{O}(g) \longrightarrow & 2 \mathrm{H}_{2}(g)+\mathrm{O}_{2}(g) \\ \Delta H=&+483.6 \mathrm{~kJ} / \mathrm{mol}\end{aligned}$$ at a certain temperature. If the increase in volume is 32.7 \(\mathrm{L}\) against an external pressure of \(1.00 \mathrm{~atm},\) calculate \(\Delta U\) for this reaction. \((1 \mathrm{~L} \cdot \mathrm{atm}=101.3 \mathrm{~J})\)

Problem 30

Consider the reaction$$\begin{aligned}\mathrm{H}_{2}(g)+\mathrm{Cl}_{2}(g) \longrightarrow 2 \mathrm{HCl}(g) & \\\\\Delta H=-184.6 \mathrm{~kJ} / \mathrm{mol} \end{aligned}$$If 3 moles of \(\mathrm{H}_{2}\) react with 3 moles of \(\mathrm{Cl}_{2}\) to form \(\mathrm{HCl}\) calculate the work done (in joules) against a pressure of \(1.0 \mathrm{~atm} .\) What is \(\Delta U\) for this reaction? Assume the reaction goes to completion and that \(\Delta V=0\). \((1 \mathrm{~L} \cdot \mathrm{atm}=101.3 \mathrm{~J})\)

Problem 32

For most biological processes, the changes in internal energy are approximately equal to the changes in enthalpy. Explain.

Problem 33

What is the difference between specific heat and heat capacity? What are the units for these two quantities? Which is the intensive property and which is the extensive property?

Problem 34

Define calorimetry and describe two commonly used calorimeters. In a calorimetric measurement, why is it important that we know the heat capacity of the calorimeter? How is this value determined?

Problem 36

Calculate the amount of heat liberated (in kJ) from 366 \(\mathrm{g}\) of mercury when it cools from \(77.0^{\circ} \mathrm{C}\) to \(12.0^{\circ} \mathrm{C}\).

Access millions of textbook solutions in one place

  • Access over 3 million high quality textbook solutions
  • Access our popular flashcard, quiz, mock-exam and notes features
  • Access our smart AI features to upgrade your learning
Get Vaia Premium now
Access millions of textbook solutions in one place

Recommended explanations on Chemistry Textbooks