Problem 97
Calculate the enthalpy change for the combustion of cyclopropane at \(298 \mathrm{~K}\), if the enthalpy of formation \(\mathrm{CO}_{2}(\mathrm{~g}), \mathrm{H}_{2} \mathrm{O}(1)\) and propene \((\mathrm{g})\) are \(-393.5,-385.8\) and \(20.42 \mathrm{~kJ} \mathrm{~mol}^{-1}\) respectively. The enthalpy of isomerization of cyclopropane to propene is \(-33.0 \mathrm{~kJ} \mathrm{~mol}^{-1}\) (a) \(1802 \mathrm{~kJ} \mathrm{~mol}^{-1}\) (b) \(2091 \mathrm{~kJ} \mathrm{~mol}^{-1}\) (c) \(2196 \mathrm{~kJ} \mathrm{~mol}^{-1}\) (d) none
Problem 98
The enthalpy change involved in the oxidation of glucose is \(-2880 \mathrm{~kJ} \mathrm{~mol}^{-1}\). Twenty five per cent of this energy is available for muscular work. If \(100 \mathrm{~kJ}\) of muscular work is needed to walk one kilometre, what is the maximum distance that a person will be able to walk after consuming \(120 \mathrm{~g}\) of glucose? (a) \(7.9 \mathrm{~km}\) (b) \(9.7 \mathrm{~km}\) (c) \(4.8 \mathrm{~km}\) (d) \(8.4 \mathrm{~km}\)
Problem 99
Anhydrous \(\mathrm{AlCl}_{3}\) is covalent. From the data given below, predict whether it would remain covalent or become ionic in aqueous solution (ionization energy of \(\mathrm{Al}=5137 \mathrm{kJmol}^{-1} \Delta \mathrm{H}_{\text {hyuntion }}\) for \(\mathrm{Al}^{+3}=-4665 \mathrm{~kJ}\) \(\mathrm{mol}^{-1}, \Delta \mathrm{H}_{\text {hydation }}\) for \(\left.\mathrm{Cl}^{-}=-381 \mathrm{~kJ} \mathrm{~mol}^{-1}\right)\) (a) ionic (b) covalent (c) both (a) and (b) (d) none of these
Problem 100
The standard molar enthalpies of formation of cyclohexane (1) and benzene (1) at \(25^{\circ} \mathrm{C}\) are \(-156\) and \(+49 \mathrm{~kJ} \mathrm{~mol}^{-1}\) respectively. The standard enthalpy of hydrogenation of cyclohexene (1) at \(25^{\circ} \mathrm{C}\) is \(-119 \mathrm{~kJ} /\) mol. Find resonance energy of benzene. (a) \(-152 \mathrm{kJmol}^{-1}\) (b) \(-159 \mathrm{~kJ} \mathrm{~mol}^{-1}\) (c) \(+152 \mathrm{~kJ} \mathrm{~mol}^{-1}\) (d) \(+159 \mathrm{~kJ} \mathrm{~mol}^{-1}\)
Problem 101
An athlete is given \(100 \mathrm{~g}\) of glucose of energy equivalent to \(1560 \mathrm{~kJ}\). He utilizes \(50 \%\) of this gained energy in the event. In order to avoid storage of energy in the body, calculate the mass of water he would need to perspire. Enthalpy of \(\mathrm{H}_{2} \mathrm{O}\) for evaporation is \(44 \mathrm{~kJ} \mathrm{~mol}^{-1}\). (a) \(346 \mathrm{~g}\) (b) \(316 \mathrm{~g}\) (c) \(323 \mathrm{~g}\) (d) \(319 \mathrm{~g}\)
Problem 102
The standard enthalpy of combustion at \(25^{\circ} \mathrm{C}\) of \(\mathrm{H}_{2}\), \(\mathrm{C}_{6} \mathrm{H}_{10}\) and cyclohexane \(\left(\mathrm{C}_{6} \mathrm{H}_{12}\right)\) are \(-241,-3800\) and \(-3920 \mathrm{~kJ} \mathrm{~mol}^{-1}\) respectively. Calculate heat of hydrogenation of cyclohexane \(\left(\mathrm{C}_{6} \mathrm{H}_{10}\right)\). (a) \(-161 \mathrm{kJmol}^{-1}\) (b) \(-131 \mathrm{~kJ} \mathrm{~mol}^{-1}\) (c) \(-121 \mathrm{kJmol}^{-1}\) (d) none
Problem 105
Calculate \(\Delta \mathrm{H}_{\mathrm{f}}^{\circ}\) for chloride ion from the following data: \(1 / 2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{I} / 2 \mathrm{Cl}_{2}(\mathrm{~g}) \longrightarrow \mathrm{HCl}(\mathrm{g})\) \(\Delta \mathrm{H}_{\mathrm{f}}^{\circ}=-92.4 \mathrm{~kJ}\) \(\mathrm{HCl}(\mathrm{g})+\mathrm{nH}_{2} \mathrm{O}(\mathrm{l}) \longrightarrow \mathrm{H}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq})\) \(\Delta \mathrm{H}_{\mathrm{Hyd}}=-74.8 \mathrm{~kJ}\) \(\Delta \mathrm{H}_{\mathrm{f}}^{\mathrm{f}}\left[\mathrm{H}^{+}\right]=0.0 \mathrm{~kJ}\) (a) \(-189 \mathrm{~kJ}\) (b) \(-167 \mathrm{~kJ}\) (c) \(+167 \mathrm{~kJ}\) (d) \(-191 \mathrm{~kJ}\)
Problem 108
The heat liberated on complete combustion of \(7.8 \mathrm{~g}\) benzene is \(327 \mathrm{~kJ}\). This heat was measured at constant volume and at \(27^{\circ} \mathrm{C}\). Calculate the heat of combustion of benzene at constant pressure \(\left(\mathrm{R}=8.3 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right)\). (a) \(-3274 \mathrm{~kJ} \mathrm{~mol}^{-1}\) (b) \(-1637 \mathrm{~kJ} \mathrm{~mol}^{-1}\) (c) \(-3270 \mathrm{~kJ} \mathrm{~mol}^{-1}\) (d) \(-3637 \mathrm{~kJ} \mathrm{~mol}^{-1}\)
Problem 109
The enthalpies of solution of \(\mathrm{BaCl}_{2}\) (s) and \(\mathrm{BaCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}\) (s) are \(-20.6\) and \(8.8 \mathrm{~kJ} \mathrm{~mol}^{-1}\) respectively. The enthalpy change for the hydration of \(\mathrm{BaCl}_{2}(\mathrm{~s})\) is (a) \(29.8 \mathrm{~kJ}\) (b) \(-11.8 \mathrm{~kJ}\) (c) \(-20.6 \mathrm{~kJ}\) (d) \(-29.4 \mathrm{~kJ}\).
Problem 110
For the reaction, \(\mathrm{A}(\mathrm{g})+2 \mathrm{~B}(\mathrm{~g}) \longrightarrow 2 \mathrm{C}(\mathrm{g})+3 \mathrm{D}(\mathrm{g})\) The value of \(\Delta \mathrm{H}\) at \(27^{\circ} \mathrm{C}\) is \(19.0 \mathrm{kcal}\). The value of \(\Delta \mathrm{E}\) for the reaction would be (given \(\mathrm{R}=2.0 \mathrm{cal} \mathrm{K}^{-1} \mathrm{~mol}^{-1}\) ) (a) \(20.8 \mathrm{kcal}\) (b) \(19.8 \mathrm{kcal}\) (c) \(18.8 \mathrm{kcal}\) (d) \(17.8 \mathrm{kcal}\)