Problem 173
The entropy change involved in the isothermal reversible expansion of 2 moles of an ideal gas from a volume of \(10 \mathrm{dm}^{3}\) to a volume of \(100 \mathrm{dm}^{3}\) at \(27^{\circ} \mathrm{C}\) is: (a) \(35.3 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\) (b) \(38.3 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\) (c) \(45.3 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\) (d) \(23.3 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\)
Problem 174
The incorrect expression among the following is (a) \(\ln \mathrm{K}=\frac{\Delta \mathrm{H}^{\circ}-\mathrm{T} \Delta \mathrm{S}^{\circ}}{\mathrm{RT}}\) (b) In isothermal process \(\mathrm{W}_{\text {reversible }}=-\mathrm{nRT} \operatorname{In} \frac{\mathrm{V}_{\mathrm{f}}}{\mathrm{V}_{1}}\) (c) \(\frac{\Delta \mathrm{G}_{\text {System }}}{\Delta \mathrm{S}_{\text {total }}}=-\mathrm{T}\) (d) \(\mathrm{K}=\mathrm{e}^{\Delta \mathrm{G}^{\circ} / \mathrm{RT}}\)
Problem 175
A piston filled with \(0.04\) mol of an ideal gas expands reversibly from \(50.0 \mathrm{~mL}\) to \(375 \mathrm{~mL}\) at a constant temperature of \(37.0^{\circ} \mathrm{C}\). As it does so, it absorbs \(208 \mathrm{~J}\) of heat. The values of \(\mathrm{q}\) and \(\mathrm{w}\) for the process will be: \((\mathrm{R}=3.314 \mathrm{~J} / \mathrm{mol} \mathrm{K})(\operatorname{Ln} 7.5=2.01)\) (a) \(\mathrm{q}=-208 \mathrm{~J}, \mathrm{w}=+208 \mathrm{~J}\) (b) \(\mathrm{q}=+208 \mathrm{~J}, \mathrm{w}=+208 \mathrm{~J}\) (c) \(\mathrm{q}=+208 \mathrm{~J}, \mathrm{w}=-208 \mathrm{~J}\) (d) \(\mathrm{q}=-208 \mathrm{~J}, \mathrm{w}=-208 \mathrm{~J}\)
Problem 176
For complete combustion of ethanol, \(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH} \ell+\) \(3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})+3 \mathrm{H}_{2} \mathrm{O} \ell\) the amount of heat produced as measured in bomb calorimeter, is \(1364.47 \mathrm{~kJ}\) \(\mathrm{mol}^{-1}\) at \(25^{\circ} \mathrm{C}\). Assuming ideality the Enthalpy of combustion, \(\Delta \mathrm{H}\) for the reaction will be: \(\left(\mathrm{R}=8.314 \mathrm{~kJ} \mathrm{~mol}^{-1}\right)\) (a) \(-1460.50 \mathrm{kj} \mathrm{mol}^{-1}\) (b) \(-1350.50 \mathrm{~kJ} \mathrm{~mol}^{-1}\) (c) \(-1366.95 \mathrm{~kJ} \mathrm{~mol}^{-1}\) (d) \(-1361.95 \mathrm{~kJ} \mathrm{~mol}^{-1}\)
Problem 178
The heats of combustion of carbon and carbon monoxide are \(-393.5\) and \(-283.5 \mathrm{~kJ} \mathrm{~mol}^{-1}\), respectively. The heat of formation (in \(\mathrm{kJ}\) ) of carbon monoxide per mole is: (a) \(676.5\) (b) \(-676.5\) (c) \(-110.5\) (d) \(110.5\)
Problem 179
At \(300 \mathrm{~K}\) and \(1 \mathrm{~atm}, 15 \mathrm{~mL}\) a gaseous hydrocarbon requires \(375 \mathrm{~mL}\) air containing \(20 \% \mathrm{O}_{2}\) by volume for complete combustion. After comustion the gases occupy \(330 \mathrm{~mL}\). Assuming that the water formed is in liquid form and the volumes were measured at the same temperature and pressure, the formula of the hydrocarbon is: (a) \(\mathrm{C}_{3} \mathrm{H}_{8}\) (b) \(\mathrm{C}_{4} \mathrm{H}_{8}\) (c) \(\mathrm{C}_{4} \mathrm{H}_{10}\) (d) \(\mathrm{C}_{3} \mathrm{H}_{6}\)