Problem 73
For a reaction at \(300 \mathrm{~K}\), enthalpy and entropy changes are \(-11.5 \times 10^{3} \mathrm{~J} \mathrm{~mol}^{-1}\) and \(-105 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}\) respectively. What is the change in Gibbs free energy? (a) \(25 \mathrm{~kJ} \mathrm{~mol}^{-1}\) (b) \(30 \mathrm{~kJ} \mathrm{~mol}^{-1}\) (c) \(15 \mathrm{~kJ} \mathrm{~mol}^{-1}\) (d) \(20 \mathrm{~kJ} \mathrm{~mol}^{-1}\)
Problem 74
For the reaction \(\mathrm{H}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l})\) the value of \(\Delta \mathrm{H}=-285.8 \mathrm{~kJ} \mathrm{~mol}^{-1}\) and \(\Delta \mathrm{S}=0.163\) \(\mathrm{JK}^{-1} \mathrm{~mol}^{-1}\). The free energy change at \(300 \mathrm{~K}\). for the reaction, is (a) \(-289.6 \mathrm{~kJ} \mathrm{~mol}^{-1}\) (b) \(437.5 \mathrm{~kJ} \mathrm{~mol}^{-1}\) (c) \(-334.7 \mathrm{~kJ} \mathrm{~mol}^{-1}\) (d) \(-291.6 \mathrm{~kJ} \mathrm{~mol}^{-1}\)
Problem 75
For an endothermic reaction, where \(\Delta \mathrm{H}\) represents the enthalpy of the reaction in \(\mathrm{kJ} / \mathrm{mol}\), the minimum value for the energy of activation will be (a) less than \(\Delta \mathrm{H}\) (b) zero (c) more than \(\Delta \mathrm{H}\) (d) equal to \(\Delta \mathrm{H}\).
Problem 76
Which of the following equations represent standard heat of formation of \(\mathrm{C}_{2} \mathrm{H}_{4} ?\) (a) \(2 \mathrm{C}\) (diamond) \(+2 \mathrm{H}_{2}(\mathrm{~g}) \longrightarrow \mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})\) (b) \(2 \mathrm{C}\) (graphite) \(+2 \mathrm{H}_{2}(\mathrm{~g}) \longrightarrow \mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})\) (c) \(2 \mathrm{C}\) (diamond) \(+4 \mathrm{H}(\mathrm{g}) \longrightarrow \mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})\) (d) \(2 \mathrm{C}\) (graphite) \(+4 \mathrm{H}(\mathrm{g}) \longrightarrow \mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})\)
Problem 79
The work done by a system is 10 joule, when 40 joule heat is supplied to it. What is the increase in internal energy of system? (a) \(30 \mathrm{~J}\) (b) \(50 \mathrm{~J}\) (c) \(40 \mathrm{~J}\) (d) \(20 \mathrm{~J}\)
Problem 80
The increase in internal energy of the system is 100 \(\mathrm{J}\) when \(300 \mathrm{~J}\) of heat is supplied to it. What is the amount of work done by the system (a) \(-200 \mathrm{~J}\) (b) \(+200 \mathrm{~J}\) (c) \(-300 \mathrm{~J}\) (d) \(-400 \mathrm{~J}\)
Problem 81
What is the value of \(\Delta \mathrm{E}\), when \(64 \mathrm{~g}\) oxygen is heated from \(0^{\circ} \mathrm{C}\) to \(100^{\circ} \mathrm{C}\) at constant volume? \(\left(\mathrm{C}_{\mathrm{v}}\right.\) on an average is \(5 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}\) ) (a) \(1500 \mathrm{~J}\) (b) \(1800 \mathrm{~J}\) (c) \(2000 \mathrm{~J}\) (d) \(2200 \mathrm{~J}\)
Problem 83
If \(0.75\) mole of an ideal gas is expanded isothermally at \(27^{\circ} \mathrm{C}\) from 15 litres to 25 litres, then work done by the gas during this process is \(\left(\mathrm{R}=8.314 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right)\) (a) \(-1054.2 \mathrm{~J}\) (b) \(-896.4 \mathrm{~J}\) (c) \(-954.2 \mathrm{~J}\) (d) \(-1254.3 \mathrm{~J}\)
Problem 84
The entropy change when \(36 \mathrm{~g}\) of water evaporates at \(373 \mathrm{~K}\) is \(\left(\Delta \mathrm{H}=40.63 \mathrm{~kJ} \mathrm{~mol}^{-1}\right)\) (a) \(218 \mathrm{~J} \mathrm{~K}^{-1}\) (b) \(150 \mathrm{~J} \mathrm{~K}^{-1}\) (c) \(118 \mathrm{~J} \mathrm{~K}^{-1}\) (d) \(200 \mathrm{~J} \mathrm{~K}^{-1}\)
Problem 85
The standard entropies of \(\mathrm{CO}_{2}(\mathrm{~g}), \mathrm{C}(\mathrm{s})\) and \(\mathrm{O}_{2}(\mathrm{~g})\) are \(213.5,5.74\) and \(205 \mathrm{JK}^{-1}\) respectively. The standard entropy of the formation of \(\mathrm{CO}_{2}(\mathrm{~g})\) is (a) \(1.16 \mathrm{~J} \mathrm{~K}^{-1}\) (b) \(2.76 \mathrm{~J} \mathrm{~K}^{-1}\) (c) \(1.86 \mathrm{~J} \mathrm{~K}^{-1}\) (d) \(2.12 \mathrm{~J} \mathrm{~K}^{-1}\)