Chapter 37: Problem 35
Consider an electron approaching a potential barrier \(2.00 \mathrm{nm}\) wide and \(7.00 \mathrm{eV}\) high. What is the energy of the electron if it has a \(10.0 \%\) probability of tunneling through this barrier?
Chapter 37: Problem 35
Consider an electron approaching a potential barrier \(2.00 \mathrm{nm}\) wide and \(7.00 \mathrm{eV}\) high. What is the energy of the electron if it has a \(10.0 \%\) probability of tunneling through this barrier?
All the tools & learning materials you need for study success - in one app.
Get started for freeFind the probability of finding an electron trapped in a onedimensional infinite well of width \(2.00 \mathrm{nm}\) in the \(n=2\) state between 0.800 and \(0.900 \mathrm{nm}\) (assume that the left edge of the well is at \(x=0\) and the right edge is at \(x=2.00 \mathrm{nm}\) ).
Write a wave function \(\Psi(\vec{r}, t)\) for a nonrelativistic free particle of mass \(m\) moving in three dimensions with momentum \(\vec{p}\), including the correct time dependence as required by the Schrödinger equation. What is the probability density associated with this wave?
The time-independent Schrödinger equation for a nonrelativistic free particle of mass \(m\) is obtained from the energy relationship \(E=p^{2} /(2 m)\) by replacing \(E\) and \(p\) with appropriate derivative operators, as suggested by the de Broglie relations. Using this procedure, derive a quantum wave equation for a relativistic particle of mass \(m,\) for which the energy relation is \(E^{2}-p^{2} c^{2}=m^{2} c^{4},\) without taking any square root of this relation.
An electron in a harmonic oscillator potential emits a photon with a wavelength of \(360 \mathrm{nm}\) as it undergoes a \(3 \rightarrow 1\) quantum jump. What is the wavelength of the photon emitted in a \(3 \rightarrow 2\) quantum jump? (Hint: The energy of the photon is equal to the energy difference between the initial and the final state of the electron.)
A surface is examined using a scanning tunneling microscope (STM). For the range of the gap, \(L\), between the tip of the probe and the sample surface, assume that the electron wave function for the atoms under investigation falls off exponentially as \(|\psi|=e^{-\left(10.0 \mathrm{nm}^{-1}\right) a}\). The tunneling current through the tip of the probe is proportional to the tunneling probability. In this situation, what is the ratio of the current when the tip is \(0.400 \mathrm{nm}\) above a surface feature to the current when the tip is \(0.420 \mathrm{nm}\) above the surface?
What do you think about this solution?
We value your feedback to improve our textbook solutions.