Chapter 29: Problem 50
In the circuit in the figure, \(R=120 . \Omega, L=3.00 \mathrm{H},\) and \(V_{\mathrm{emf}}=40.0 \mathrm{~V}\) After the switch is closed, how long will it take the current in the inductor to reach \(300 . \mathrm{mA} ?\)
Chapter 29: Problem 50
In the circuit in the figure, \(R=120 . \Omega, L=3.00 \mathrm{H},\) and \(V_{\mathrm{emf}}=40.0 \mathrm{~V}\) After the switch is closed, how long will it take the current in the inductor to reach \(300 . \mathrm{mA} ?\)
All the tools & learning materials you need for study success - in one app.
Get started for freeAn emf of \(20.0 \mathrm{~V}\) is applied to a coil with an inductance of \(40.0 \mathrm{mH}\) and a resistance of \(0.500 \Omega\). a) Determine the energy stored in the magnetic field when the current reaches \(\frac{1}{4}\) of its maximum value. b) How long does it take for the current to reach this value?
A supersonic aircraft with a wingspan of \(10.0 \mathrm{~m}\) is flying over the north magnetic pole (in a magnetic field of magnitude 0.500 G oriented perpendicular to the ground) at a speed of three times the speed of sound (Mach 3). What is the potential difference between the tips of the wings? Assume that the wings are made of aluminum.
The electric field near the Earth's surface has a magnitude of \(150 . \mathrm{N} / \mathrm{C}\) and the magnitude of the Earth's magnetic field near the surface is typically \(50.0 \mu \mathrm{T}\). Calculate and compare the energy densities associated with these two fields. Assume that the electric and magnetic properties of air are essentially those of a vacuum.
A metal hoop is laid flat on the ground. A magnetic field that is directed upward, out of the ground, is increasing in magnitude. As you look down on the hoop from above, what is the direction of the induced current in the hoop?
Which of the following will induce a current in a loop of wire in a uniform magnetic field? a) decreasing the strength of the field b) rotating the loop about an axis parallel to the field c) moving the loop within the field d) all of the above e) none of the above
What do you think about this solution?
We value your feedback to improve our textbook solutions.