Chapter 28: Problem 50
A current of \(2.00 \mathrm{~A}\) is flowing through a 1000 -turn solenoid of length \(L=40.0 \mathrm{~cm} .\) What is the magnitude of the magnetic field inside the solenoid?
Chapter 28: Problem 50
A current of \(2.00 \mathrm{~A}\) is flowing through a 1000 -turn solenoid of length \(L=40.0 \mathrm{~cm} .\) What is the magnitude of the magnetic field inside the solenoid?
All the tools & learning materials you need for study success - in one app.
Get started for freeTwo long, straight wires are parallel to each other. The wires carry currents of different magnitudes. If the amount of current flowing in each wire is doubled, the magnitude of the force between the wires will be a) twice the magnitude of the original force. b) four times the magnitude of the original force. c) the same as the magnitude of the original force. d) half of the magnitude of the original force.
Two solenoids have the same length, but solenoid 1 has 15 times more turns and \(\frac{1}{9}\) as large a radius and carries 7 times as much current as solenoid 2. Calculate the ratio of the magnitude of the magnetic field inside solenoid 1 to that of the magnetic field inside solenoid \(2 .\) a) 105 c) 144 e) 197 b) 123 d) 168
Discuss how the accuracy of a compass needle in showing the true direction of north can be affected by the magnetic field due to currents in wires and appliances in a residential building.
The magnetic character of bulk matter is determined largely by electron spin magnetic moments, rather than by orbital dipole moments. (Nuclear contributions are negligible, as the proton's spin magnetic moment is about 658 times smaller than that of the electron.) If the atoms or molecules of a substance have unpaired electron spins, the associated magnetic moments give rise to paramagnetism or to ferromagnetism if the interactions between atoms or molecules are strong enough to align them in domains. If the atoms or molecules have no net unpaired spins, then magnetic perturbations of electrons' orbits give rise to diamagnetism. a) Molecular hydrogen gas \(\left(\mathrm{H}_{2}\right)\) is weakly diamagnetic. What does this imply about the spins of the two electrons in the hydrogen molecule? b) What would you expect the magnetic behavior of atomic hydrogen gas (H) to be?
A long, straight wire carrying a \(2.00-\mathrm{A}\) current lies along the \(x\) -axis. A particle with charge \(q=-3.00 \mu \mathrm{C}\) moves parallel to the \(y\) -axis through the point \((x, y, z)=(0,2,0)\). Where in the \(x y\) -plane should another long, straight wire be placed so that there is no magnetic force on the particle at the point where it crosses the plane?
What do you think about this solution?
We value your feedback to improve our textbook solutions.