Chapter 27: Problem 23
The work done by the magnetic field on a charged particle in motion in a cyclotron is zero. How, then, can a cyclotron be used as a particle accelerator, and what essential feature of the particle's motion makes it possible?
Chapter 27: Problem 23
The work done by the magnetic field on a charged particle in motion in a cyclotron is zero. How, then, can a cyclotron be used as a particle accelerator, and what essential feature of the particle's motion makes it possible?
All the tools & learning materials you need for study success - in one app.
Get started for freeA 30 -turn square coil with a mass of \(0.250 \mathrm{~kg}\) and a side length of \(0.200 \mathrm{~m}\) is hinged along a horizontal side and carries a 5.00 - A current It is placed in a magnetic field pointing vertically downward and having a magnitude of \(0.00500 \mathrm{~T}\). Determine the angle that the plane of the coil makes with the vertical when the coil is in equilibrium. Use \(g=9.81 \mathrm{~m} / \mathrm{s}^{2}\)
Protons in the solar wind reach Earth's magnetic field with a speed of \(400 \mathrm{~km} / \mathrm{s}\). If the magnitude of this field is \(5.0 \cdot 10^{-5} \mathrm{~T}\) and the velocity of the protons is perpendicular to it, what is the cyclotron frequency of the protons after entering the field? a) \(122 \mathrm{~Hz}\) b) \(233 \mathrm{~Hz}\) c) \(321 \mathrm{~Hz}\) d) \(432 \mathrm{~Hz}\) e) \(763 \mathrm{~Hz}\)
A square loop of wire of side length \(\ell\) lies in the \(x y\) -plane, with its center at the origin and its sides parallel to the \(x\) - and \(y\) -axes. It carries a current, \(i\), flowing in the counterclockwise direction, as viewed looking down the \(z\) -axis from the positive direction. The loop is in a magnetic field given by \(\vec{B}=\left(B_{0} / a\right)(z \hat{x}+x \hat{z}),\) where \(B_{0}\) is a constant field strength, \(a\) is a constant with the dimension of length, and \(\hat{x}\) and \(\hat{z}\) are unit vectors in the positive \(x\) -direction and positive \(z\) -direction. Calculate the net force on the loop.
A rail gun accelerates a projectile from rest by using the magnetic force on a current-carrying wire. The wire has radius \(r=5.10 \cdot 10^{-4} \mathrm{~m}\) and is made of copper having a density of \(\rho=8960 \mathrm{~kg} / \mathrm{m}^{3}\). The gun consists of rails of length \(L=1.00 \mathrm{~m}\) in a constant magnetic field of magnitude \(B=2.00 \mathrm{~T}\) oriented perpendicular to the plane defined by the rails. The wire forms an electrical connection across the rails at one end of the rails. When triggered, a current of \(1.00 \cdot 10^{4}\) A flows through the wire, which accelerates the wire along the rails. Calculate the final speed of the wire as it leaves the rails. (Neglect friction.)
A proton is accelerated from rest by a potential difference of \(400 . \mathrm{V}\). The proton enters a uniform magnetic field and follows a circular path of radius \(20.0 \mathrm{~cm} .\) Determine the magnitude of the magnetic field.
What do you think about this solution?
We value your feedback to improve our textbook solutions.