Chapter 27: Problem 19
A charged particle moves under the influence of an electric field only. Is it possible for the particle to move with a constant speed? What if the electric field is replaced with a magnetic field?
Chapter 27: Problem 19
A charged particle moves under the influence of an electric field only. Is it possible for the particle to move with a constant speed? What if the electric field is replaced with a magnetic field?
All the tools & learning materials you need for study success - in one app.
Get started for freeA helium leak detector uses a mass spectrometer to detect tiny leaks in a vacuum chamber. The chamber is evacuated with a vacuum pump and then sprayed with helium gas on the outside. If there is any leak, the helium molecules pass through the leak and into the chamber, whose volume is sampled by the leak detector. In the spectrometer, helium ions are accelerated and released into a tube, where their motion is perpendicular to an applied magnetic field, \(\vec{B},\) and they follow a circular path of radius \(r\) and then hit a detector. Estimate the velocity required if the radius of the ions' circular path is to be no more than \(5.00 \mathrm{~cm},\) the magnetic field is \(0.150 \mathrm{~T}\), and the mass of a helium- 4 atom is about \(6.64 \cdot 10^{-27} \mathrm{~kg}\). Assume that each ion is singly ionized (has one electron less than the neutral atom). By what factor does the required velocity change if helium-3 atoms, which have about \(\frac{3}{4}\) as much mass as helium- 4 atoms, are used?
Initially at rest, a small copper sphere with a mass of \(3.00 \cdot 10^{-6} \mathrm{~kg}\) and a charge of \(5.00 \cdot 10^{-4} \mathrm{C}\) is accelerated through a \(7000 .-\mathrm{V}\) potential difference before entering a magnetic field of magnitude \(4.00 \mathrm{~T}\), directed perpendicular to its velocity. What is the radius of curvature of the sphere's motion in the magnetic field?
A charged particle is moving in a constant magnetic field. Which of the following statements concerning the magnetic force exerted on the particle is (are) true? (Assume that the magnetic field is not parallel or antiparallel to the velocity.) a) It does no work on the particle. b) It may increase the speed of the particle. c) It may change the velocity of the particle. d) It can act only on the particle while the particle is in motion. e) It does not change the kinetic energy of the particle.
A rectangular coil with 20 windings carries a current of \(2.00 \mathrm{~mA}\) flowing in the counterclockwise direction. It has two sides that are parallel to the \(y\) -axis and have length \(8.00 \mathrm{~cm}\) and two sides that are parallel to the \(x\) -axis and have length \(6.00 \mathrm{~cm}\). A uniform magnetic field of \(50.0 \mu \mathrm{T}\) acts in the positive \(x\) -direction. What torque must be applied to the loop to hold it steady?
A simple galvanometer is made from a coil that consists of \(N\) loops of wire of area \(A\). The coil is attached to a mass, \(M\), by a light rigid rod of length \(L\). With no current in the coil, the mass hangs straight down, and the coil lies in a horizontal plane. The coil is in a uniform magnetic field of magnitude \(B\) that is oriented horizontally. Calculate the angle from the vertical of the rigid rod as a function of the current, \(i\), in the coil.
What do you think about this solution?
We value your feedback to improve our textbook solutions.