Chapter 23: Problem 62
Two protons at rest and separated by \(1.00 \mathrm{~mm}\) are released simultaneously. What is the speed of either at the instant when the two are \(10.0 \mathrm{~mm}\) apart?
Chapter 23: Problem 62
Two protons at rest and separated by \(1.00 \mathrm{~mm}\) are released simultaneously. What is the speed of either at the instant when the two are \(10.0 \mathrm{~mm}\) apart?
All the tools & learning materials you need for study success - in one app.
Get started for freeSuppose that an electron inside a cathode ray tube starts from rest and is accelerated by the tube's voltage of \(21.9 \mathrm{kV}\). What is the speed (in \(\mathrm{km} / \mathrm{s}\) ) with which the electron (mass \(\left.=9.11 \cdot 10^{-31} \mathrm{~kg}\right)\) hits the screen of the tube?
A solid conducting sphere of radius \(R_{1}\) has a charge of \(Q=4.263 \mu C\) evenly distributed over its surface. A second solid conducting sphere of radius \(R_{2}=0.6239 \mathrm{~m}\) is initially uncharged and at a distance of \(10.00 \mathrm{~m}\) from the first sphere. The two spheres are momentarily connected with a wire, which is then removed. The resulting charge on the second sphere is \(1.162 \mu C .\) What is the radius of the first sphere?
The electron beam emitted by an electron gun is controlled (steered) with two sets of parallel conducting plates: a horizontal set to control the vertical motion of the beam, and a vertical set to control the horizontal motion of the beam. The beam is emitted with an initial velocity of \(2.00 \cdot 10^{7} \mathrm{~m} / \mathrm{s} .\) The width of the plates is \(d=5.00 \mathrm{~cm},\) the separation between the plates is \(D=4.00 \mathrm{~cm},\) and the distance between the edge of the plates and a target screen is \(L=40.0 \mathrm{~cm} .\) In the absence of any applied voltage, the electron beam hits the origin of the \(x y\) -coordinate system on the observation screen. What voltages need to be applied to the two sets of plates for the electron beam to hit a target placed on the observation screen at coordinates \((x, y)=(0 \mathrm{~cm}, 8.00 \mathrm{~cm}) ?\)
If a proton and an alpha particle (composed of two protons and two neutrons) are each accelerated from rest through the same potential difference, how do their resulting speeds compare? a) The proton has twice the speed of the alpha particle. b) The proton has the same speed as the alpha particle. c) The proton has half the speed of the alpha particle. d) The speed of the proton is \(\sqrt{2}\) times the speed of the alpha particle. e) The speed of the alpha particle is \(\sqrt{2}\) times the speed of the proton.
A solid metal ball with a radius of \(3.00 \mathrm{~m}\) has a charge of \(4.00 \mathrm{mC}\) If the electric potential is zero far away from the ball, what is the electric potential at each of the following positions? a) at \(r=0 \mathrm{~m},\) the center of the ball b) at \(r=3.00 \mathrm{~m},\) on the surface of the ball c) at \(r=5.00 \mathrm{~m}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.