Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

The density of a sample of air is \(1.205 \mathrm{~kg} / \mathrm{m}^{3},\) and the bulk modulus is \(1.42 \cdot 10^{5} \mathrm{~N} / \mathrm{m}^{2}\). a) Find the speed of sound in the air sample. b) Find the temperature of the air sample.

Short Answer

Expert verified
Answer: The speed of sound in the air sample is approximately 341.2 m/s, and the temperature of the air sample is about 292.8 K.

Step by step solution

01

Calculate the speed of sound in the air sample

Use the speed of sound equation, \(v = \sqrt{\frac{B}{\rho}}\), where \(B = 1.42 \cdot 10^{5} \mathrm{~N} / \mathrm{m}^{2}\) and \(\rho = 1.205 \mathrm{~kg} / \mathrm{m}^{3}\). \(v = \sqrt{\frac{1.42 \cdot 10^{5} \mathrm{~N} / \mathrm{m} ^{2}}{1.205 \mathrm{~kg} / \mathrm{m}^{3}}}\) Calculate the value of v using the given values of B and rho: \(v \approx 341.2 \mathrm{~m/s}\) The speed of sound in the air sample is about 341.2 m/s.
02

Calculate the temperature of the air sample

Use the equation relating the bulk modulus, temperature, and density of an ideal gas, \(B = \rho R T\), where \(B = 1.42 \cdot 10^{5} \mathrm{~N} / \mathrm{m}^{2}\), \(\rho = 1.205 \mathrm{~kg} / \mathrm{m}^{3}\), and \(R = 287 \mathrm{~J} / (\mathrm{kg·K})\). \(1.42 \cdot 10^{5} \mathrm{~N} / \mathrm{m}^{2} = 1.205 \mathrm{~kg} / \mathrm{m}^{3} \times 287 \mathrm{~J} / (\mathrm{kg·K}) \cdot T\) Rearrange the equation and solve for T: \(T = \frac{1.42 \cdot 10^{5} \mathrm{~N} / \mathrm{m}^{2}}{1.205 \mathrm{~kg} / \mathrm{m}^{3} \times 287 \mathrm{~J} / (\mathrm{kg·K})}\) Calculate the value of T using the given values of B, rho, and R: \(T \approx 292.8 \mathrm{~K}\) The temperature of the air sample is about 292.8 K.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free