Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

A comet orbits the Sun with a period of 89.17 yr. At perihelion, the comet is 1.331 AU from the Sun. How far from the Sun (in AU) is the comet at aphelion?

Short Answer

Expert verified
Answer: The distance of the comet from the Sun at aphelion is approximately 10.6504 AU.

Step by step solution

01

Recall Kepler's Third Law of Planetary Motion

Kepler's Third Law states that the square of the period of any celestial body's orbit is proportional to the cube of the semi-major axis (average distance from the Sun) of its orbit. Mathematically, this can be written as: P^2 = a^3 where P is the period in Earth years, and a is the semi-major axis in astronomical units (AU).
02

Identify the given values in the exercise

We are given the following information: Period (P) = 89.17 years Distance at perihelion (closest point of the orbit) = 1.331 AU Our goal is to find the distance at aphelion (farthest point of the orbit).
03

Calculate the semi-major axis using Kepler's Third Law

Using Kepler's Third Law, we can write the equation as: (89.17)^2 = a^3 To determine the semi-major axis (a), we compute the cube root of both sides of the equation: a = (89.17^2)^(1/3) a ≈ 5.9907 AU The semi-major axis is roughly 5.9907 AU.
04

Calculate the distance at aphelion

To find the distance at aphelion, we can use the property that the sum of the distances at perihelion and aphelion is equal to twice the semi-major axis (because the semi-major axis is the average of the perihelion and aphelion distances). Mathematically, this is represented as: (perihelion distance) + (aphelion distance) = 2 * semi-major axis We can then solve for the aphelion distance: aphelion distance = (2 * semi-major axis) - perihelion distance aphelion distance = (2 * 5.9907) - 1.331 aphelion distance ≈ 10.6504 AU Therefore, the comet is approximately 10.6504 AU away from the Sun at aphelion.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free