Chapter 10: Problem 64
A circular platform of radius \(R_{p}=4.00 \mathrm{~m}\) and mass \(M_{\mathrm{p}}=400 . \mathrm{kg}\) rotates on frictionless air bearings about its vertical axis at 6.00 rpm. An \(80.0-\mathrm{kg}\) man standing at the very center of the platform starts walking (at \(t=0\) ) radially outward at a speed of \(0.500 \mathrm{~m} / \mathrm{s}\) with respect to the platform. Approximating the man by a vertical cylinder of radius \(R_{\mathrm{m}}=0.200 \mathrm{~m},\) determine an equation (specific expression) for the angular velocity of the platform as a function of time. What is the angular velocity when the man reaches the edge of the platform?
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.