Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

If the deepest structure you wish to image is 10.0cm from the transducer, what is the maximum number of pulses per second that can be emitted? (a) 3850; (b) 7700; (c) 15400; (d) 1,000,000 .

Short Answer

Expert verified

The correct answer is (b)7700 s1 .

Step by step solution

01

Given data

Distance of object from transducer is 10cm.

02

The Frequency

The number of pulses generated every second, is called frequency. Which is given as f=1t

Here, t is the time period of a pulse.

03

Number Of Pulses Per Second

The pulses travel distance 10cm then back to the transducer due to the reflection, so the total distance is d=20cm. We are given the velocity through the tissue by v=1540m/s.

f=1t=vd

Plug the values for v and d to get f-

f=1520 m/s0.20 m=7700 s1

Therefore, the maximum number of pulses is 7700 s1.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A long tube contains air at a pressure of 1.00 atm and a temperature of 77.0°C. The tube is open at one end and closed at the other by a movable piston. A tuning fork that vibrates with a frequency of 500 Hz is placed near the open end. Resonance is produced when the piston is at distances 18.0 cm, 55.5 cm, and 93.0 cm from the open end. (a) From these values, what is the speed of sound in air at 77.0°C? (b) From the result of part (a), what is the value of g? (c) These results show that a displacement antinode is slightly outside the open end of the tube. How far outside is it?

Because the speed of ultrasound in bone is about twice the speed in soft tissue, the distance to a structure that lies beyond a bone can be measured incorrectly. If a beam passes through 4cmof tissue, then 2cmof bone, and then another 1cmof tissue before echoing off a cyst and returning to the transducer, what is the difference between the true distance to the cyst and the distance that is measured by assuming the speed is always 1540m/s? Compared with the measured distance, the structure is actually

(a) 1cmfarther

(b) 2cmfarther

(c) 1cmcloser

(d) 2cmcloser

After a beam passes through 10cm of tissue, what is the beam’s intensity as a fraction of its initial intensity from the transducer?

(a)1×10-11; (b)0.001; (c)0.01; (d) 0.1

Consider a sound wave in air that has displacement amplitude 0.0200 mm. Calculate the pressure amplitude for frequencies of (a) 150 Hz; (b) 1500 Hz; (c) 15,000 Hz. In each case compare the result to the pain threshold, which is 30 Pa.

One end of a horizontal rope is attached to a prong of another end passes over a pulley and supports a 1.50-kg mass. The linear mass density of the rope is 0.0480 kg/m. (a) What is the speed of a transverse wave on the rope? (b) What is the wavelength? (c) How would you answer to parts (a) and (b) change if the mass were increased to 3.00 kg?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free