Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Two organ pipes, open at one end but closed at the other, are each 1.14m long. One is now lengthened by 2.00cm . Find the beat frequency that they produce when playing together in their fundamentals.

Short Answer

Expert verified

The beat frequency came out to be 1.3 Hz.

Step by step solution

01

Given Data

The length of the pipe is-1.14​ m

Increase in length- 2.00 cm

02

Formula of fundamental frequency

The formula of fundamental frequency is f=vλ.

As pipes are closed from the other end, λ=4L .

03

Calculate the beat frequency

Beat frequency can be expressed asf=v41L11L2 .

f=v411.14 m11.16 mf=344 m/s4×0.02 m1.14 m ×1.16 mf=1.3 Hz

So, the beat frequency is1.3 Hz .

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

You blow across the open mouth of an empty test tube and produce the fundamental standing wave of the air column inside the test tube. The speed of sound in air is 344 m/s and the test tube act as a stopped pipe. (a) If the length of the air column in the test tube is 14.0 cm, what is the frequency of this standing wave? (b) What is the frequency of the fundamental standing wave in the air column if the test tube is half filled with water?

A long, closed cylindrical tank contains a diatomic gas that is maintained at a uniform temperature that can be varied. When you measure the speed of sound v in the gas as a function of the temperature T of the gas, you obtain these results:

(a) Explain how you can plot these results so that the graph will be well fit by a straight line. Construct this graph and verify that the plotted points do lie close to a straight line. (b) Because the gas is diatomic, g = 1.40. Use the slope of the line in part (a) to calculate M, the molar mass of the gas. Express M in grams/mole. What type of gas is in the tank?

An organ pipe has two successive harmonics with frequencies 1372 and 1764 Hz. (a) Is this an open or a stopped pipe? Explain. (b) What two harmonics are these? (c) What is the length of the pipe?

If the deepest structure you wish to image is 10.0cm from the transducer, what is the maximum number of pulses per second that can be emitted? (a) 3850; (b) 7700; (c) 15400; (d) 1,000,000 .

The siren of a fire engine that is driving northward at 30.0 m/s emits a sound of frequency 2000 Hz. A truck in front of this fire engine is moving northward at 20.0 m/s. (a) What is the frequency of the siren’s sound that the fire engine’s driver hears reflected from the back of the truck? (b) What wavelength would this driver measure for these reflected sound waves?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free