Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

A wire with mass \(40.0\;{\rm{g}}\) is stretched so that its ends are tied down at points \(80.0\;{\rm{cm}}\) apart. The wire vibrates in its fundamental mode with frequency \(60.0\;{\rm{Hz}}\) and with an amplitude at the antinodes of \(0.300\;{\rm{cm}}\).

(a) What is the speed of propagation of transverse waves in the wire?

(b) Compute the tension in the wire.

(c) Find the maximum transverse velocity and acceleration of particles in the wire.

Short Answer

Expert verified

(a) The speed of propagation of transverse waves in the wire is, \(96.0\;{{\rm{m}} \mathord{\left/ {\vphantom {{\rm{m}} {\rm{s}}}} \right. \\} {\rm{s}}}\).

Step by step solution

01

Identification of the given data

The given data can be listed below as,

  • The length of wire is, \(L = 80.0\;{\rm{cm}} = 0.80\;{\rm{m}}\).
  • The frequency is, \(f = 60\;{\rm{Hz}}\).
02

Concept

To determine the velocity, first apply the equation for wave velocity and substitute fundamental wavelength in terms of wire length.

The relation between frequency, wavelength, and speed is expressed as,

\(f=\frac{v}{\lambda}\) …(2)

Here\(\lambda \)is the wavelength,\(f\)is the frequency, and\(v\)is the speed of wave.

03

Determination of the speed of propagation of transverse waves in the wire

The fundamental standing wave is illustrated in the below figure,

From the figure,

\(\begin{array}{c}\frac{\lambda }{2} = L\\\lambda = 2L\end{array}\)

Substitute \(0.80\;{\rm{m}}\) for \(L\) in the above equation.

\(\begin{array}{c}\lambda=2\times0.80\;{\rm{m}}\\\lambda=1.60\;{\rm{m}}\end{array}\)

The wavelength is, \(\lambda = 1.60\;{\rm{m}}\).

Substitute \(1.60\;{\rm{m}}\) for \(\lambda \) and \(60\;{\rm{Hz}}\) for \(f\) in the equation (1).

\(\begin{array}{c}60\;{\rm{Hz}} = \frac{v}{{1.60\;{\rm{m}}}}\\v = 60\;{\rm{Hz}} \times 1.60\;{\rm{m}}\\v = 96.0\;{{\rm{m}} \mathord{\left/ {\vphantom {{\rm{m}} {\rm{s}}}} \right. \\} {\rm{s}}}\end{array}\)

Hence the speed of propagation of transverse waves in the wire is, \(96.0\;{{\rm{m}} \mathord{\left/ {\vphantom {{\rm{m}} {\rm{s}}}} \right. \\} {\rm{s}}}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Singing in the Shower. A pipe closed at both ends can have standing waves inside of it, but you normally don’t hear them because little of the sound can get out. But you can hear them if you are inside the pipe, such as someone singing in the shower. (a) Show that the wavelengths of standing waves in a pipe of length L that is closed at both ends are λ0=2L/nand the frequencies are given by f0=nv4Lnf1, where n = 1, 2, 3, c.(b) Modelling it as a pipe, find the frequency of fundamental and the first two overtones for a shower 2.50 m tall. Are these frequencies audible?

For cranial ultrasound, why is it advantageous to use frequencies in the kHz range rather than the MHz range?

The Sacramento City Council adopted a law to reduce the allowed sound intensity level of the much-despised leaf blowers from their current level of about 95 dB to 70 db. With the new law, what is the ratio of the new allowed intensity to the previously allowed intensity?

How fast (as a percentage of light speed) would a star have to be moving so that the frequency of the light we receive from it is 10.0% higher than the frequency of the light it is emitting? Would it be moving away from us or toward us? (Assume it is moving either directly away from us or directly toward us.)

The four strings on a violin have different thicknesses but are all under approximately the same tension. Do waves travel faster on the thick strings or the thin strings? Why? How does the fundamental vibration frequency compare for the thick versus the thin strings?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free