Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Suppose that the left-traveling pulse in Exercise 15.32 is below the level of the unstretched string instead of above it. Make the same sketches that you did in that exercise

Short Answer

Expert verified

The sketches are shown below.

Step by step solution

01

Identification of the given data

The given data can be listed below as,

  • The given times are, \(t = 0.250\;{\rm{s}},\,t = 0.500\;{\rm{s}},\,t = 0.750\;{\rm{s}},\,t = 1.000\;{\rm{s}},\,t = 1.250\;{\rm{s}}\).
02

Significance of the principle of superposition

According to the superposition principle, the total disturbance caused by two or more waves overlapping in space equals the algebraic sum of the individual disturbances.

03

Determination of the sketches

During their overlap, the pulses interfere with one another, but once they have completely gone through one another, they take on their original shape.

The figure below shows the string's shape at each designated period,

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Can a standing wave be produced on a string by superposing two waves traveling in opposite directions with the same frequency but different amplitudes? Why or why not? Can a standing wave be produced by superposing two waves traveling in opposite directions with different frequencies but the same amplitude? Why or why not?

You have a stopped pipe of adjustable length close to a taut 62.0-cm, 7.25-g wire under a tension of 4110 N. You want to adjust the length of the pipe so that, when it produces sound at its fundamental frequency, this sound causes the wire to vibrate in its second overtone with very large amplitude. How long should the pipe be?

You blow across the open mouth of an empty test tube and produce the fundamental standing wave of the air column inside the test tube. The speed of sound in air is 344 m/s and the test tube act as a stopped pipe. (a) If the length of the air column in the test tube is 14.0 cm, what is the frequency of this standing wave? (b) What is the frequency of the fundamental standing wave in the air column if the test tube is half filled with water?

How fast (as a percentage of light speed) would a star have to be moving so that the frequency of the light we receive from it is 10.0% higher than the frequency of the light it is emitting? Would it be moving away from us or toward us? (Assume it is moving either directly away from us or directly toward us.)

By touching a string lightly at its center while bowing, a violinist can produce a note exactly one octave above the note to which the string is tuned—that is, a note with exactly twice the frequency. Why is this possible?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free