The change in entropy of the surrounding is given as:
\(\Delta {s_1} = - \frac{{m\left( {L + c\left( {{T_2} - {T_1}} \right)} \right)}}{{{T_2}}}\)
Here,\(L\)is the latent heat of ice and its value is\(334\;{\rm{kJ}}/{\rm{kg}}\),\(c\)is the specific heat of water and its value is\(4.2\;{\rm{kJ}}/{\rm{kg}} \cdot {\rm{K}}\).
Substitute all the values in the above equation.
\(\begin{array}{l}\Delta {s_1} = - \frac{{\left( {4.50\;{\rm{kg}}} \right)\left( {334\;{\rm{kJ}}/{\rm{K}} + \left( {4.2\;{\rm{kJ}}/{\rm{kg}} \cdot {\rm{K}}} \right)\left( {\left( {3.50\;^\circ {\rm{C}} + 273} \right)\;{\rm{K}} - \left( {0\;^\circ {\rm{C}} + 273} \right)\;{\rm{K}}} \right)} \right)}}{{\left( {3.50\;^\circ {\rm{C}} + 273} \right)\;{\rm{K}}}}\\\Delta {s_1} = - 5.7\;{\rm{kJ}}/{\rm{K}}\end{array}\)
The change in entropy of the ocean is given as:
\(\Delta {s_2} = mc\ln \left( {\frac{{{T_2}}}{{{T_1}}}} \right)\)
Substitute all the values in the above equation.
\(\begin{array}{l}\Delta {s_2} = \left( {4.50\;{\rm{kg}}} \right)\left( {4.2\;{\rm{kJ}}/{\r\(\Delta s = \Delta {s_1} + \Delta {s_2} + \Delta {s_3}\)\(\begin{array}{l}\Delta {s_3} = \frac{{\left( {4.50\;{\rm{kg}}} \right)\left( {334\;{\rm{kJ}}/{\rm{K}}} \right)}}{{\left( {0\;^\circ {\rm{C}} + 273} \right)\;{\rm{K}}}}\\\Delta {s_3} = 5.51\;{\rm{kJ}}/{\rm{K}}\end{array}\)m{kg}} \cdot {\rm{K}}} \right)\ln \left( {\frac{{\left( {3.50\;^\circ {\rm{C}} + 273} \right)\;{\rm{K}}}}{{\left( {0\;^\circ {\rm{C}} + 273} \right)\;{\rm{K}}}}} \right)\\\Delta {s_2} = 0.241\;{\rm{kJ}}/{\rm{K}}\end{array}\)
The change in entropy of the ice is given as:
\(\Delta {s_3} = \frac{{mL}}{{{T_1}}}\)
Substitute all the values in the above equation.
The change in entropy of world is given as:
Substitute all the values in the above equation.
\(\begin{array}{l}\Delta s = - 5.7\;{\rm{kJ}}/{\rm{K}} + 0.241\;{\rm{kJ}}/{\rm{K}} + 5.51\;{\rm{kJ}}/{\rm{K}}\\\Delta s = 0.051\;{\rm{kJ}}/{\rm{K}}\end{array}\)
Therefore, the entropy of world increases by \(0.051\;{\rm{kJ}}/{\rm{K}}\).