Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

With the assumption that the air temperature is a uniform 0.0°C, what is the density of the air at an altitude of 1.00 km as a percentage of the density at the surface?

Short Answer

Expert verified

The density of the air at an altitude of 1.00 km as a percentage of the density at the surface is ρ=0.833ρ0

Step by step solution

01

Step 1:

For density, the function of pressure is

ρ=P.MR.T

AsρP

ρρ0=PP0PP0=e-M.g×1000RT=e-28.8×10-3×9.8×10008.315×273=0.883

Therefore, the density of the air at an altitude of 1.00 km as a percentage of the density at the surface isρ=0.883ρ0.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A diesel engine performs 2200 J of mechanical work and discards 4300 J of heat each cycle. (a) How much heat must be supplied to the engine in each cycle? (b) What is the thermal efficiency of the engine?

Question: If the air temperature is the same as the temperature of your skin (about 30°C), your body cannot get rid of heat by transferring it to the air. In that case, it gets rid of the heat by evaporating water (sweat). During bicycling, a typical 70-kg person’s body produces energy at a rate of about 500W due to metabolism, 80% of which is converted to heat. (a) How many kilograms of water must the person’s body evaporate in an hour to get rid of this heat? The heat of vaporization of water at body temperature is 2.42×106J/kg. (b) The evaporated water must, of course, be replenished, or the person will dehydrate. How many 750-mL bottles of water must the bicyclist drink per hour to replenish the lost water? (Recall that the mass of a litre of water is 1.0 kg.

In Example 20.4, a Carnot refrigerator requires a work input of only 230 Jto extract 346Jof heat from the cold reservoir. Doesn’t this discrepancy imply a violation of the law of conservation of energy? Explain why or why not.

Discuss the application of the first law of thermodynamics to a mountaineer who eats food, gets warm and perspires a lot during a climb, and does a lot of mechanical work in raising herself to the summit. The mountaineer also gets warm during the descent. Is the source of this energy the same as the source during the ascent?

If the root-mean-square speed of the atoms of an ideal gas is to be doubled, by what factor must the Kelvin temperature of the gas be increased? Explain.

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free