Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

On a sunny day, large “bubbles” of air form on the sun-warmed earth, gradually expand, and finally break free to rise through the atmosphere. Soaring birds and glider pilots are fond of using these “thermals” to gain altitude easily. This expansion is essentially an adiabatic process. Why?

Short Answer

Expert verified

The work done by the system will decrease the internal energy of the system and hence the temperature.

Hence, The air bubble attains the temperature in equilibrium with its surroundings.

Step by step solution

01

Adiabatic process explanation

On a sunny day, the air gets warmer and becomes less dense It rises like a bubble. When it reaches up, the surrounding air has even less density. It leads to the rapid expansion of this air bubble". Due to this expansion,the air-bubble system is doing work. Since this process is adiabatic, so there is no heat exchange.

In an adiabatic process, there is no heat exchange

O~=0

According to the first law of thermodynamics, we have

O~=U+W

Therefore, we get

0=U+WW=-U

02

Conclusion

Therefore, the work done by the system will decrease the internal energy of the system and hence the temperature.

After this, the air bubble attains the temperature in equilibrium with its surroundings.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Q18.23 The discussion in Section 18.4 concluded that all ideal monatomic gases have the same heat capacity Cv. Does this mean that it takes the same amount of heat to raise the temperature of 1.0gof each one by1.0K?Explain your reasoning.

You hold an inflated balloon over a hot-air vent in your house and watch it slowly expand. You then remove it and let it cool back to room temperature. During the expansion, which was larger: the heat added to the balloon or the work done by the air inside it? Explain. (Assume that air is an ideal gas.) Once the balloon has returned to room temperature, how does the net heat gained or lost by the air inside it compare to the net work done on or by the surrounding air?

If you heat the air inside a rigid, sealed container until its Kelvin temperature doubles, the air pressure in the container will also double. Is the same thing true if you double the Celsius temperature of the air in the container? Explain.

It is well known that a potato bakes faster if a large nail is suck through it .Why? Does an Aluminium nail work better than a steel one? Why or why not? There is also a gadget on the market to hasten the roasting meat; it consists of a hollow metal tube containing a wick and some water. This is claimed to work much better than a solid metal rod. How does it work?

Household refrigerators have arrays or coils of tubing on the outside, usually at the back or bottom. When the refrigerator is running, the tubing becomes quite hot. Where does the heat come from?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free