Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

You drop a solid sphere of aluminium in a bucket of water that sits on the ground. The buoyant force equals the weight of water displaced; this is less than the weight of the sphere, so the sphere sinks to the bottom. If you take the bucket with you on an elevator that accelerates upward, the apparent weight of the water increases and the buoyant force on the sphere increases. Could the acceleration of the elevator be great enough to make the sphere pop up out of the water? Explain.

Short Answer

Expert verified

No, the acceleration of the elevator will not be enough to make the sphere pop up out.

Step by step solution

01

Understanding the apparent weight

The apparent weight of any particular accelerating body is equivalent to the vector addition of body’s original weight and the negative of entire acceleration forces of the body.

02

Determining whether the sphere will pop out of the water or not

It is mentioned in the question that as the bucket of water is taken on an elevator accelerating upward, its apparent weight rises along with the buoyant force on the sphere. But the apparent weight of the sphere rises too, and there won’t be enough buoyant force on the elevator to exceed the weight of the sphere and displace it out of water.

Thus, the acceleration of elevator won’t be enough to bring the sphere out of the bucket.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

The mass of Venus is 81.5% that of the earth, and its radius is 94.9% that of the earth. (a) Compute the acceleration due to gravity on the surface of Venus from these data. (b) If a rock weighs 75.0 N on earth, what would it weigh at the surface of Venus?

A lunar lander is makingits descent to Moon Base I (Fig. E2.40). The lander descendsslowly under the retro-thrust of its descent engine. The engine iscut off when the lander is 5.0 m above the surface and has a downwardspeed of 0.8m/s . With the engine off, the lander is in freefall. What is the speed of the lander just before it touches the surface?The acceleration due to gravity on the moon is 1.6m/s2.

Calculate the earth’s gravity force on a 75-kg astronaut who is repairing the Hubble Space Telescope 600 km above the earth’s surface, and then compare this value with his weight at the earth’s surface. In view of your result, explain why it is said that astronauts are weightless when they orbit the earth in a satellite such as a space shuttle. Is it because the gravitational pull of the earth is negligibly small?

A rubber hose is attached to a funnel, and the free end is bent around to point upward. When water is poured into the funnel, it rises in the hose to the same level as in the funnel, even though the funnel has a lot more water in it than the hose does. Why? What supports the extra weight of the water in the funnel?

For the hydraulic lift shown in Fig. 12.7, what must be the ratio of the diameter of the vessel at the car to the diameter of the vessel where the force F1 is applied so that a 1520-kg car can be lifted with a force F1 of just 125 N?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free