Density of the gold is given\(19.3\,{{\rm{g}} \mathord{\left/
{\vphantom {{\rm{g}} {{\rm{c}}{{\rm{m}}^{\rm{3}}}}}} \right.
\kern-\nulldelimiterspace} {{\rm{c}}{{\rm{m}}^{\rm{3}}}}}\)
\(\begin{array}{c}1\,{\rm{Kg}} = 1000\,{\rm{g}}\\1\,{\rm{m}} = 100\,{\rm{cm}}\end{array}\)
Then the density of gold is,
\(\begin{array}{c}\rho = 19.3\,{{\rm{g}} \mathord{\left/
{\vphantom {{\rm{g}} {{\rm{c}}{{\rm{m}}^{\rm{3}}}}}} \right.
\kern-\nulldelimiterspace} {{\rm{c}}{{\rm{m}}^{\rm{3}}}}} \times \frac{{1\,{\rm{kg}}}}{{1000\,{\rm{g}}}} \times {\left( {\frac{{100\,{\rm{cm}}}}{{1\,{\rm{m}}}}} \right)^3}\\ = 1.93 \times {10^4}\,{{{\rm{kg}}} \mathord{\left/
{\vphantom {{{\rm{kg}}} {{{\rm{m}}^{\rm{3}}}}}} \right.
\kern-\nulldelimiterspace} {{{\rm{m}}^{\rm{3}}}}}\end{array}\)
Hence from the above calculation we can say\(1.93 \times {10^4}\,{{{\rm{kg}}} \mathord{\left/
{\vphantom {{{\rm{kg}}} {{{\rm{m}}^{\rm{3}}}}}} \right.
\kern-\nulldelimiterspace} {{{\rm{m}}^{\rm{3}}}}}\)is the value of density in kilograms per cubic meter.