Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

What is the difference between tangential and radial acceleration for a point on a rotating body?

Short Answer

Expert verified

The difference between tangential and radial acceleration for a point on a rotating body is explained below.

Step by step solution

01

Concept/Significance of tangential and radial acceleration

The radial acceleration is developed due to Centripetal force. It direction of the radial acceleration is towards the center. It is measured in . The tangential acceleration is developed when a body moves with a non-uniform speed.

02

Determine the difference between tangential and radial acceleration for a point on a rotating body

The tangential acceleration is given by,

aT=rα

The radial acceleration is given by,

aR=ω2r

The tangential acceleration aTis the component parallel to the instantaneous velocity. It acts to change the magnitude of the particles speed, and it is equal to the rate of change of speed. The radial acceleration aRis associated with the change of direction of the particle’s velocity.

The tangential acceleration also exists in linear motion, while the radial acceleration exists only in the case of rotational motion.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

The mass of Venus is 81.5% that of the earth, and its radius is 94.9% that of the earth. (a) Compute the acceleration due to gravity on the surface of Venus from these data. (b) If a rock weighs 75.0 N on earth, what would it weigh at the surface of Venus?

Question- Neptunium. In the fall of 2002, scientists at Los Alamos National Laboratory determined that the critical mass of neptunium-237 is about 60 kg. The critical mass of a fissionable material is the minimum amount that must be brought together to start a nuclear chain reaction. Neptunium-237 has a density of 19.5 g/cm3. What would be the radius of a sphere of this material that has a critical mass?

A car is stopped at a traffic light. It then travels along a straight road such that its distance from the light is given byxt=bt2-ct3, whereb=2.40m/s2andc=0.120m/s3. (a) Calculate the average velocity of the car for the time interval t = 0 to t = 10.0 s. (b) Calculate the instantaneous velocity of the car at t = 0, t = 5.0 s, and t = 10.0 s. (c) How long after starting from rest is the car again at rest?

(a) The recommended daily allowance (RDA) of the trace metal magnesium is 410 mg/day for males. Express this quantity in µg/day. (b) For adults, the RDA of the amino acid lysine is 12 mg per kg of body weight. How many grams per day should a 75-kg adult receive? (c) A typical multivitamin tablet can contain 2.0 mg of vitamin B2 (riboflavin), and the RDA is 0.0030 g/day. How many such tablets should a person take each day to get the proper amount of this vitamin, if he gets none from other sources? (d) The RDA for the trace element selenium is 0.000070 g/day. Express this dose in mg/day.

A physics professor leaves her house and walks along the sidewalk toward campus. After 5 min, it starts to rain, and she returns home. Her distance from her house as a function of time is shown in Fig. E2.10 At which of the labeled points is her velocity (a) zero? (b) constant and positive? (c) constant and negative? (d) increasing in magnitude? (e) decreasing in magnitude?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free