Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

You can play catch with a softball in a bus moving with constant speed on a straight road, just as though the bus were at rest. Is this still possible when the bus is making a turn at constant speed on a level road? Why or why not?

Short Answer

Expert verified

You won’t be able to play softball like you would when the bust is moving at a constant velocity and the reason for it is explained.

Step by step solution

01

Inertia

The body’s tendency to stay moving once set in motion or at rest to remain at rest is called inertia. So when a car suddenly stops, the passenger who tends to stay in motion will move forward relative to the seats until the inertia of the passenger is completely stopped.

02

Uniform circular motion

An object moving in a circular motion with constant speed is said to be in a uniform circular motion. The object has a tangential velocity whose direction is perpendicular to the centripetal acceleration, causing it to move in the circular path.

In the given case, a bus rounds a corner on a level road; the centripetal force makes the bus travel in a curved path. The speed is constant but velocity is changing, hence accelerating. But you are in a state of inertia of moving in a particular direction. As a result, you as well as the softball will resist the change in the direction of the motion, and therefore you and the softball will tend to move outward to one side opposite the centripetal force. The softball will move toward one side even if it is thrown straight up. As a result, you won’t be able to play softball like you would when the bust is moving at a constant velocity.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A lunar lander is makingits descent to Moon Base I (Fig. E2.40). The lander descendsslowly under the retro-thrust of its descent engine. The engine iscut off when the lander is 5.0 m above the surface and has a downwardspeed of 0.8m/s . With the engine off, the lander is in freefall. What is the speed of the lander just before it touches the surface?The acceleration due to gravity on the moon is 1.6m/s2.

A bird is flying due east. Its distance from a tall building is given by

xt=28.0m+12.4m/st-0.0450m/s3t3.What is the instantaneous velocity of the bird when t = 8.00 s?

The acceleration of a particle is given by ax(t)=2.00m/s2+(3.00m/s3)t. (a) Find the initial velocityv0xsuch that the particle will have the same x-coordinate att=4.00sas it had att=0. (b) What will be the velocity att=4.00s?

A Tennis Serve. In the fastest measured tennis serve, the ball left the racquet at 73.14m/s. A served tennis ball is typically in contact with the racquet for30.0and starts from rest. Assume constant acceleration. (a) What was the ball’s acceleration during this serve? (b) How far did the ball travel during the serve?

A particle of mass 3m is located 1.00mfrom a particle of mass m.

(a) Where should you put a third mass M so that the net gravitational force on M due to the two masses is precisely zero?

(b) Is the equilibrium of M at this point stable or unstable (i) for points along the line connecting m and 3m, and (ii) for points along the line passing through M and perpendicular to the line connecting m and 3m?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free