Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

A 5.00pF, parallel-plate, air-filled capacitor with circular plates are to be used in a circuit in which it will be subjected to potentials of up to 1.00 * 102 V. The electric field between the plates is to be no greater than 1.00 * 104 N/C. As a budding electrical engineer for Live-Wire Electronics, your tasks are to

(a) design the capacitor by finding what its physical dimensions and separation must be

(b) find the maximum charge these plates can hold.

Short Answer

Expert verified

The separation must be 4.24cm.

The maximum charge can be 500pC.

Step by step solution

01

About capacitance potential difference.

The capacitance C of a capacitor is the ratio of the magnitude of the charge Q on either conductor to the magnitude of the potential difference between the conductors. The capacitance depends only on the geometry of the capacitor. The greater the capacitance C of a capacitor, the greater the magnitude Q of charge on either conductor for a given potential difference V and hence the greater the amount of stored energy.

We have a bunch of variables in the above equations. So, in most problems, we are asked to get one of them by the above equation either directly by substitution or by solving the equation indirectly for this variable.

02

Step 2:

a)

Hence, the separation must be 4.24cm.

03

Calculation of charge.

b)

The capacitance is


Hence the maximum charge can be 500pC.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A 1.50- μF capacitor is charging through a 12.0-Ω resistor using a 10.0-V battery. What will be the current when the capacitor has acquired14of its maximum charge? Will it be14of the maximum current?

Lightning Strikes. During lightning strikes from a cloud to the

ground, currents as high as 25,000 A can occur and last for about 40 ms.

How much charge is transferred from the cloud to the earth during such a

strike?

Questions: A conductor that carries a net charge has a hollow, empty cavity in its interior. Does the potential vary from point to point within the material of the conductor? What about within the cavity? How does the potential inside the cavity compare to the potential within the material of the conductor?

CALC The region between two concentric conducting spheres with radii and is filled with a conducting material with resistivity ρ. (a) Show that the resistance between the spheres is given by

R=ρ4π(1a-1b)

(b) Derive an expression for the current density as a function of radius, in terms of the potential differenceVab between the spheres. (c) Show that the result in part (a) reduces to Eq. (25.10) when the separation L=b-abetween the spheres is small.

An electrical conductor designed to carry large currents has a circular cross section 2.50 mm in diameter and is 14.0 m long. The resistance between its ends is 0.104Ω. (a) What is the resistivity of the material? (b) If the electric-field magnitude in the conductor is 1.28 V/m, what is the total current? (c) If the material has 8.5×1028free electrons per cubic meter, find the average drift speed under the conditions of part (b).

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free