Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

A 5.00pF, parallel-plate, air-filled capacitor with circular plates are to be used in a circuit in which it will be subjected to potentials of up to 1.00 * 102 V. The electric field between the plates is to be no greater than 1.00 * 104 N/C. As a budding electrical engineer for Live-Wire Electronics, your tasks are to

(a) design the capacitor by finding what its physical dimensions and separation must be

(b) find the maximum charge these plates can hold.

Short Answer

Expert verified

The separation must be 4.24cm.

The maximum charge can be 500pC.

Step by step solution

01

About capacitance potential difference.

The capacitance C of a capacitor is the ratio of the magnitude of the charge Q on either conductor to the magnitude of the potential difference between the conductors. The capacitance depends only on the geometry of the capacitor. The greater the capacitance C of a capacitor, the greater the magnitude Q of charge on either conductor for a given potential difference V and hence the greater the amount of stored energy.

We have a bunch of variables in the above equations. So, in most problems, we are asked to get one of them by the above equation either directly by substitution or by solving the equation indirectly for this variable.

02

Step 2:

a)

Hence, the separation must be 4.24cm.

03

Calculation of charge.

b)

The capacitance is


Hence the maximum charge can be 500pC.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Two coils are wound around the same cylindrical form. When the current in the first coil is decreasing at a rate of , the induced emf in the second coil has magnitude 1.65×10-3V. (a) What is the mutual inductance of the pair of coils? (b) If the second coil has 25 turns, what is the flux through each turn when the current in the first coil equals 1.20A? (c) If the current in the second coil increases at a rate of 0.360A/s, what is the magnitude of the induced emf in the first coil?

A resistor with resistance Ris connected to a battery that has emf 12.0 V and internal resistance r=0.40Ω. For what two values of R will the power dissipated in the resistor be 80.0 W ?

A 140-g ball containing excess electrons is dropped into a 110-m vertical shaft. At the bottom of the shaft, the ball suddenly enters a uniform horizontal magnetic field that has magnitude 0.300 T and direction from east to west. If air resistance is negligibly small, find the magnitude ond direction of the force that this magnetic field exerts on the ball just as it enters the field.

A rule of thumb used to determine the internal resistance of a source is that it is the open circuit voltage divide by the short circuit current. Is this correct? Why or why not?

Electrons in an electric circuit pass through a resistor. The wire on either side of the resistor has the same diameter.(a) How does the drift speed of the electrons before entering the resistor compare to the speed after leaving the resistor? (b) How does the potential energy for an electron before entering the resistor compare to the potential energy after leaving the resistor? Explain your reasoning.

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free