Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

In an LRC series circuit, can the instantaneous voltage across the capacitor exceed the source voltage at that same instant? Can this be true for the instantaneous voltage across the inductor and across the resistor? Explain.

Short Answer

Expert verified

The instantaneous voltage across the capacitor cannot exceed the source voltage at that same instant. This is also true for instantaneous voltage across inductor and resistor.

Step by step solution

01

Define instantaneous voltage and Kirchhoff’s voltage law

When inductor, capacitor and resistor are connected in series with an ac power supply, the circuit is called LCR series ac circuit.

AC power supply provides variable voltage. This voltage varies with time only. So, the voltage at any given instant of time is called instantaneous voltage.

Kirchhoff’s voltage law states that the voltage around a loop equals the sum of every voltage drop in the same loop for any closed network and equals zero.

02

Apply Kirchhoff’s voltage law

Voltage at any instant provide by ac power supply must be equal to instantaneous voltage across each electrical component (resistor, inductor and capacitor) in circuit as per Kirchhoff’s voltage law.

Vac=VR+VL+VcWhererole="math" localid="1663856786161" Vac is voltage provided by AC supply at an instant,VR is the voltage across resistor at same instant,role="math" localid="1663856763293" VL is the voltage across inductor at same instantVc and is the voltage across capacitor at same instant.

From above expression it is clear thatVac>Vc the instantaneous voltage across the capacitor cannot exceed the source voltage at that same instant. Similarly,role="math" localid="1663856841295" Vac>VR and Vac>Vc.

Therefore, the instantaneous voltage across the capacitor, inductor and resistor cannot exceed the source voltage at that same instant.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Two copper wires with different diameter are joined end to end. If a current flow in the wire combination, what happens to electrons when they move from the large diameter wire into the smaller diameter wire? Does their drift speed increase, decrease, or stay the same? If the drift speed change, what is the role the force that causes the change? Explain your reasoning.

A particle with charge-5.60nCis moving in a uniform magnetic fieldrole="math" localid="1655717557369" B=-(1.25T)k^

The magnetic force on the particle is measured to berole="math" localid="1655717706597" F=-(3.40×10-7N)i^-(7.40×10-7N)j^ (a) Calculate all the components of the velocity of the particle that you can from this information. (b) Are there
components of the velocity that are not determined by the measurement of the force? Explain. (c) Calculate the scalar productv֏F. What is the angle between velocity and force?

Question: A conducting sphere is placed between two charged parallel plates such as those shown in Figure. Does the electric field inside the sphere depend on precisely where between the plates the sphere is placed? What about the electric potential inside the sphere? Do the answers to these questions depend on whether or not there is a net charge on the sphere? Explain your reasoning.

We have seen that a coulomb is an enormous amount of charge; it is virtually impossible to place a charge of 1 C on an object. Yet, a current of 10A,10C/sis quite reasonable. Explain this apparent discrepancy.

In the circuit shown in Fig. E26.41, both capacitors are initially charged to 45.0 V. (a) How long after closing the switch S will the potential across each capacitor be reduced to 10.0 V, and (b) what will be the current at that time?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free