Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

If the electric field of a point charge were proportional to 1>r3 instead of 1>r2, would Gauss’s law still be valid? Explain your reasoning. (Hint: Consider a spherical Gaussian surface cantered on a single point charge.)

Short Answer

Expert verified

No, The Gauss’s law won’t be valid if the electric field is proportional to1r3

Step by step solution

01

Relation between electric flux and electric field

The electric field equation when=1r3will be14πε0qr3

Now from gauss law we know that the relation between electric flux and the electric field and the charge is: role="math" localid="1663933522142" E=EA=14πε0qε04πr2=q0

Therefore, it is proved that gauss law is not valid when electric field is proportional to1r3

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Consider the circuit of Fig. E25.30. (a)What is the total rate at which electrical energy is dissipated in the 5.0-Ω and 9.0-Ω resistors? (b) What is the power output of the 16.0-V battery? (c) At what rate is electrical energy being converted to other forms in the 8.0-V battery? (d) Show that the power output of the 16.0-V battery equals the overall rate of consumption of electrical energy in the rest of the circuit.

Fig. E25.30.

In the circuit shown in Fig. E26.20, the rate at which R1 is dissipating electrical energy is 15.0 W. (a) Find R1 and R2. (b) What is the emf of the battery? (c) Find the current through both R2 and the 10.0 Ω resistor. (d) Calculate the total electrical power consumption in all the resistors and the electrical power delivered by the battery. Show that your results are consistent with conservation of energy.

Electrons in an electric circuit pass through a resistor. The wire on either side of the resistor has the same diameter.(a) How does the drift speed of the electrons before entering the resistor compare to the speed after leaving the resistor? (b) How does the potential energy for an electron before entering the resistor compare to the potential energy after leaving the resistor? Explain your reasoning.

Question: A conducting sphere is placed between two charged parallel plates such as those shown in Figure. Does the electric field inside the sphere depend on precisely where between the plates the sphere is placed? What about the electric potential inside the sphere? Do the answers to these questions depend on whether or not there is a net charge on the sphere? Explain your reasoning.

The current in a wire varies with time according to the relationship

I=55A-(0.65As2)t2. (a) How many coulombs of charge pass a cross section of the wire in

the time interval between t=0and role="math" localid="1655721302619" t=8.0s? (b) What constant current would transport the

same charge in the same time interval?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free