Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

A helium ion (He++) that comes within about 10 fm of the center of the nucleus of an atom in the sample may induce a nuclear reaction instead of simply scattering. Imagine a helium ion with a kinetic energy of 3.0 MeV heading straight toward an atom at rest in the sample. Assume that the atom stays fixed. What minimum charge can the nucleus of the atom have such that the helium ion gets no closer than 10 fm from the center of the atomic nucleus? (1 fm = 1 * 10-15 m, and e is the magnitude of the charge of an electron or a proton.) (a) 2e; (b) 11e; (c) 20e; (d) 22e.

Short Answer

Expert verified

11e charge can the nucleus of the atom have such that the helium ion gets no closer than 10 fm from the center of the atomic nucleus.

Step by step solution

01

Potential energy

Potential energy between charges is given by the equation

Ub=kqqHer

02

Determine the charge of the nucleus

The potential energy between two particles is given by

Ub=kqqHer

Helium has the charge of two protons

So, the next equation will be

Ka+Ua=Kb+UbKa=UbKa=kqqHerq=rkakqHe

Now from the equation the charge is

q=rKa2ek=(10×10-15m)(3.0×106ev×1.6×10-19J/eV)2(1.6×10-19J)(9.0×109N.m2/C2)=1.66×10-18C=11e

Therefore, 11e charge can the nucleus of the atom have such that the helium ion gets no closer than 10 fm from the center of the atomic nucleus.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

CALC The region between two concentric conducting spheres with radii and is filled with a conducting material with resistivity ρ. (a) Show that the resistance between the spheres is given by

R=ρ4π(1a-1b)

(b) Derive an expression for the current density as a function of radius, in terms of the potential differenceVab between the spheres. (c) Show that the result in part (a) reduces to Eq. (25.10) when the separation L=b-abetween the spheres is small.

An idealized voltmeter is connected across the terminals of a15.0-Vbattery, and arole="math" localid="1655719696009" 75.0-Ω appliance is also connected across its terminals. If the voltmeter reads11.9V (a) how much power is being dissipated by the appliance, and (b) what is the internal resistance of the battery?

Could an accelerator be built in which all the forces on the particles, for steering and for increasing speed, are magnetic forces? Why or why not?

A beam of protons traveling at 1.20 km/s enters a uniform magnetic field, traveling perpendicular to the field. The beam exits the magnetic field, leaving the field in a direction pependicurlar to its original direction (Fig. E27.24). The beam travels a distance of 1.10 cm while in the field. What is the magnitude of the magnetic field?

BIO Transmission of Nerve Impulses. Nerve cells transmit electric

signals through their long tubular axons. These signals propagate due to a

sudden rush of Na+ions, each with charge +e, into the axon. Measurements

have revealed that typically about 5.6×1011Na+ions enter each meter of the

axon during a time of . What is the current during this inflow of charge

in a meter of axon?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free