Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Some types of bacteria contain chains of ferromagnetic particles parallel to their long axis. The chains act like small bar magnets that align these magnetotactic bacteria with the earth’s magnetic field. In one experiment to study the response of such bacteria to magnetic fields, a solenoid is constructed with copper wire in diameter, evenly wound in a single layer to form a helical coil of and diameter . The wire has a very thin layer of insulation, and the coil is wound so that adjacent turns are just touching. The solenoid, which generates a magnetic field, is in an enclosure that shields it from other magnetic fields. A sample of magnetotactic bacteria is placed inside the solenoid. The torque on an individual bacterium in the solenoid’s magnetic field is proportional to the magnitude of the magnetic field and to the sine of the angle between the long axis of the bacterium and the magnetic-field direction.

To use a larger sample, the experimenters construct a solenoid that has the same length, type of wire, and loop spacing but twice the diameter of the original. How does the maximum possible magnetic torque on a bacterium in this new solenoid compare with the torque the bacterium would have experienced in the original solenoid? Assume that the currents in the solenoids are the same. The maximum torque in the new solenoid is (a) twice that in the original one; (b) half that in the original one; (c) the same as that in the original one; (d) one-quarter that in the original one.

Short Answer

Expert verified

The correct option is (c).

Step by step solution

01

  Identification of the concept

B=μ0nlThe magnetic field due to a solenoid inside is,

Where, B is the magnetic field magnitude, n is the total number of turns or loops and l is the current flowing through the solenoid.

02

Determination of the maximum torque in the new solenoid.

According to the solenoid equation, the magnetic field inside a solenoid is dependent on the number of terms, the current, and also length. Since all three factors are the same in both the solenoids, thus, the magnetic field is also the same in the solenoids. Hence, option (c) is correct.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In Europe the standard voltage in homes is 220 V instead of the 120 used in the United States. Therefore a “100-W” European bulb would be intended for use with a 220-V potential difference (see Problem 25.36). (a) If you bring a “100-W” European bulb home to the United States, what should be its U.S. power rating? (b) How much current will the 100-W European bulb draw in normal use in the United States?

High-voltage power supplies are sometimes designed intentionally to have rather large internal resistance as a safety precaution. Why is such a power supply with a large internal resistance safer than a supply with the same voltage but lower internal resistance?

Questions: When a thunderstorm is approaching, sailors at sea sometimes observe a phenomenon called “St. Elmo’s fire,” a bluish flickering light at the tips of masts. What causes this? Why does it occur at the tips of masts? Why is the effect most pronounced when the masts are wet? (Hint: Seawater is a good conductor of electricity.)

(See Discussion Question Q25.14.) Will a light bulb glow more brightly when it is connected to a battery as shown in Fig. Q25.16a, in which an ideal ammeter is placed in the circuit, or when it is connected as shown in Fig. 25.16b, in which an ideal voltmeter V is placed in the circuit? Explain your reasoning.

A light bulb glows because it has resistance. The brightness of a light bulb increases with the electrical power dissipated in the bulb. (a) In the circuit shown in Fig. Q25.14a, the two bulbs A and B are identical. Compared to bulb A, does bulb B glow more brightly, just as brightly, or less brightly? Explain your reasoning. (b) Bulb B is removed from the circuit and the circuit is completed as shown in Fig. Q25.14b. Compared to the brightness of bulb A in Fig. Q25.14a, does bulb A now glow more brightly, just as brightly, or less brightly? Explain your reasoning

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free