Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

A wide, long, insulating belt has a uniform positive charge per unit area s on its upper surface. Rollers at each end move the belt to the right at a constant speed v. Calculate the magnitude and direction of the magnetic field produced by the moving belt at a point just above its surface. (Hint:At points near the surface and far from its edges or ends, the moving belt can be considered to be an infinite current sheet like that in Problem 28.73.)

Short Answer

Expert verified

The magnitude of the magnetic field is P0vσ2 and the direction is outside the page.

Step by step solution

01

 Identification of the concept

The conveyer belt is considered or approximated in this case to be an infinitely long current sheet.

Also from the mentioned problem 28.73,the magnetic field B of an infinite current sheet is,

B=12μ0ln

Here, symbols have their usual meanings and n=1L, L being the width of the sheet.

02

Determination of the magnitude and direction of the magnetic field produced by the conveyer belt.

Consider a small length on the conveyer belt to be x.

Therefore charge in that small length element is,

ΔQ=LΔxσ

Now, the current expression is,

I=ΔQΔt=LΔxΔtσ=LVσ

Thus, by approximating the same magnetic field as an infinite sheet,

B=μ02LI=μ0vσ2

Thus the magnitude is obtained. Refer to the image below for checking the direction of the magnetic field.

The direction of the magnetic field is out of the page.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A 1.50- μF capacitor is charging through a 12.0-Ω resistor using a 10.0-V battery. What will be the current when the capacitor has acquired14of its maximum charge? Will it be14of the maximum current?

Two coils have mutual inductance M=3.25×10-4H. The current in the first coil increases at a uniform rate of 830 A/S. (a) what is the magnitude of the induced emf in the second coil? Is it constant? (b) Suppose that the current described is in the second coil rather than the first. What is the magnitude of the induced emf in the first coil?

A 5.00-A current runs through a 12-gauge copper wire (diameter

2.05 mm) and through a light bulb. Copper has8.5×108free electrons per

cubic meter. (a) How many electrons pass through the light bulb each

second? (b) What is the current density in the wire? (c) At what speed does

a typical electron pass by any given point in the wire? (d) If you were to use

wire of twice the diameter, which of the above answers would change?

Would they increase or decrease?

A light bulb glows because it has resistance. The brightness of a light bulb increases with the electrical power dissipated in the bulb. (a) In the circuit shown in Fig. Q25.14a, the two bulbs A and B are identical. Compared to bulb A, does bulb B glow more brightly, just as brightly, or less brightly? Explain your reasoning. (b) Bulb B is removed from the circuit and the circuit is completed as shown in Fig. Q25.14b. Compared to the brightness of bulb A in Fig. Q25.14a, does bulb A now glow more brightly, just as brightly, or less brightly? Explain your reasoning

An emf source with E = 120 V, a resistor with R = 80.0 Ω, and a capacitor with C = 4.00 µF are connected in series. As the capacitor charges, when the current in the resistor is 0.900 A, what is the magnitude of the charge on each plate of the capacitor?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free