Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Neurons are components of the nervous system of the body that transmit signals as electric impulses travel along their length. These impulses propagate when thecharge suddenly rushes into and then out of a part of the neuron called an axon. Measurements have shown that, during the inflow part of this cycle, approximately5.6×1011Na+ (sodium ions) per meter, each with charge +e, enter the axon. How many coulombs of charge enter the length of the axon during this process?

Short Answer

Expert verified

The magnitude of charge entering the axon is 1.3nC.

Step by step solution

01

Step 1: Concept of electric charge.

An electric charge is an entity or a property of a particle that causes it to get influenced via experiencing a force when placed inside an electric or magnetic field.The charge due to electrons is mainly what is referred to as electric charge and one electron carries a charge of 1.6×10-19C. Like charges repel each other and unlike charges attract each other.

02

(b) Determination of the magnitude of charge entering the axon.

There is a finite charge carried by each ion when it enters the axon.

The total charge is calculated as,

Q=Ne ….. (1)

Where N is the number of ions and e is the electric charge having the value.1.6×10-19C

Calculate N by the given values,

N=(no.ofions/length)(1.5cm)=5.6×1011ions/m1.5×102m=8.4×109ions

Thus, the total charge according to equation (1) is,

Q=Ne=8.4×1091.6×1019C=1.3×109C=1.3nC

Hence, the magnitude of charge entering the axon is 1.3 nC .

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Two coils are wound around the same cylindrical form. When the current in the first coil is decreasing at a rate of , the induced emf in the second coil has magnitude 1.65×10-3V. (a) What is the mutual inductance of the pair of coils? (b) If the second coil has 25 turns, what is the flux through each turn when the current in the first coil equals 1.20A? (c) If the current in the second coil increases at a rate of 0.360A/s, what is the magnitude of the induced emf in the first coil?

(a) At room temperature, what is the strength of the electric field in a

12-gauge copper wire (diameter 2.05mm) that is needed to cause a 4.50-A

current to flow? (b) What field would be needed if the wire were made of silver

instead?

Small aircraft often have 24 V electrical systems rather than the 12 V systems in automobiles, even though the electrical power requirements are roughly the same in both applications. The explanation given by aircraft designers is that a 24 V system weighs less than a 12 V system because thinner wires can be used. Explain why this is so.

In the circuit, in Fig. E26.47 the capacitors are initially uncharged, the battery has no internal resistance, and the ammeter is idealized. Find the ammeter reading (a) just after the switch S is closed and (b) after S has been closed for a very long time.

A 5.00-A current runs through a 12-gauge copper wire (diameter

2.05 mm) and through a light bulb. Copper has8.5×108free electrons per

cubic meter. (a) How many electrons pass through the light bulb each

second? (b) What is the current density in the wire? (c) At what speed does

a typical electron pass by any given point in the wire? (d) If you were to use

wire of twice the diameter, which of the above answers would change?

Would they increase or decrease?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free