Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

A circular loop of wire with a radius of 12.0 cm and oriented in the horizontal xy-plane is located in a region of uniform magnetic field. A field of 1.5 T is directed along the positive z-direction, which is upward. (a) If the loop is removed from the field region in a time interval of 2.0 ms, find the average emf that will be induced in the wire loop during the extraction process. (b) If the coil is viewed looking down on it from above, is the induced current in the loop clockwise or counter clockwise?

Short Answer

Expert verified
  1. Average emf induced will beε=34V
  2. Induced current in the loop will be counterclockwise.

Step by step solution

01

Electric Flux

Magnetic flux is expressed as;

Φ=BAcosϕ

So, here B is the magnetic field

A is area.

02

Average emf induced

Suppose having a circular loop of wire with radius r. It is oriented in the horizontal xy-plane and is located in a region of the uniform magnetic field with a magnitude of B=1.5T that points in the direction of the +z direction.

If the loop is removed from the field region in t=2.0ms, the magnetic field and the area initially point in the same direction, so the angle between them is ϕ=0°, and the initial and final fluxes are;

Here

The induced emf is equal to the flux change divided by the time it takes to go from the initial to the final flux, t, and multiplied by the number of turns N=1

So, the average emf is;

Hence, the average emf induced will be

03

Induced Current

According to Lenz's law, the current must flow counterclockwise through the loop to prevent the magnetic field from being removed, so the current must flow counterclockwise.

Hence, the induced current in the loop will be counterclockwise.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free