Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

An uncharged metal sphere hangs from a nylon thread. When a positively charged glass rod is brought close to the metal sphere, the sphere is drawn toward the rod. But if the sphere touches the rod, it suddenly flies away from the rod. Explain why the sphere is first attracted and then repelled.

Short Answer

Expert verified

The objects attract initially because negative charge is induced on the metal sphere. But when they touch, charges flow in both direction with a surplus of positive charge build up finally that causes repulsion.

Step by step solution

01

Explanation for the attraction of the sphere towards the positively charged rod.

When the sphere which is neutral initially is brought close to the positively charged rod, the free electrons are drawn to the surface which induces a negative charge all over the side that faces the rod. This effect is called polarizing the sphere, by separating the negative and positive charges while keeping the total charge of the sphere unchanged, which is neutral.

02

Explanation of the sudden repulsion of the sphere when it is touched to the rod transfer.

Polarization creates a force field that is attractive between the negative charge side of the sphere and the rod and also a force field that is repulsive between the side of the sphere which is positive. As the electric force according to Coulomb’s law varies with the square of the distance between charges, therefore the attraction force will dominate as shown in the figure below.

Due to the attraction, the sphere will finally touch the rod which allows the charges to flow and get transferred in both directions, i.e. from rod to sphere and sphere to rod. Some of the electrons will flow to the rod from the metal sphere but the rod has an abundance of positive charge which gets transferred to the sphere. So, now the rod is still positively charged but with less number of excess charges. Thus, both the objects being positively charged now will surely repel each other quiet abruptly.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

An emf source with E = 120 V, a resistor with R = 80.0 Ω, and a capacitor with C = 4.00 µF are connected in series. As the capacitor charges, when the current in the resistor is 0.900 A, what is the magnitude of the charge on each plate of the capacitor?

Two coils have mutual inductance M=3.25×10-4H. The current in the first coil increases at a uniform rate of 830 A/S. (a) what is the magnitude of the induced emf in the second coil? Is it constant? (b) Suppose that the current described is in the second coil rather than the first. What is the magnitude of the induced emf in the first coil?

Question: A high voltage dc power line falls on a car, so the entire metal body of the car is at a potential of with respect to the ground. What happens to the occupants (a) when they are sitting in the car and (b) when they step out of the car? Explain your reasoning.

A 1.50-mcylindrical rod of diameter 0.500cmis connected to

a power supply that maintains a constant potential difference of 15.0Vacross

its ends, while an ammeter measures the current through it. You observe that

at room temperature (20.0C)the ammeter reads 18.5Awhile at 92.0Cit

reads 17.2A. You can ignore any thermal expansion of the rod. Find (a) the

resistivity at and (b) the temperature coefficient of resistivity at for the material of the rod.

An electron moves at 1.40×106m/sthrough a regionin which there is a magnetic field of unspecified direction and magnitude 7.40×10-2T. (a) What are the largest and smallest possible magnitudes of the acceleration of the electron due to the magnetic field? (b) If the actual acceleration of the electron is one-fourth of the largest magnitude in part (a), what is the angle
between the electron velocity and the magnetic field?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free