Chapter 4: Q58P (page 845)
A resistor with resistance is connected to a battery that has emf 12.0 V and internal resistance . For what two values of will the power dissipated in the resistor be 80.0 W ?
Short Answer
The two values of are and .
Chapter 4: Q58P (page 845)
A resistor with resistance is connected to a battery that has emf 12.0 V and internal resistance . For what two values of will the power dissipated in the resistor be 80.0 W ?
The two values of are and .
All the tools & learning materials you need for study success - in one app.
Get started for freeIn the circuit, in Fig. E26.47 the capacitors are initially uncharged, the battery has no internal resistance, and the ammeter is idealized. Find the ammeter reading (a) just after the switch S is closed and (b) after S has been closed for a very long time.
An idealized ammeter is connected to a battery as shown in Fig.
E25.28. Find (a) the reading of the ammeter, (b) the current through the
resistor, (c) the terminal voltage of the battery.
Fig. E25.28.
Cyclotrons are widely used in nuclear medicine for producing short-lived radioactive isotopes. These cyclotrons typically accelerate (the hydride ion, which has one proton and two electrons) to an energy of This ion has a mass very close to that of a proton because the electron mass is negligible about of the proton’s mass. A typical magnetic field in such cyclotrons is .(a) What is the speed of a ? (b) If the has energy what is the radius of this ion’s circulator orbit?
(See Discussion Question Q25.14.) Will a light bulb glow more brightly when it is connected to a battery as shown in Fig. Q25.16a, in which an ideal ammeter is placed in the circuit, or when it is connected as shown in Fig. 25.16b, in which an ideal voltmeter V is placed in the circuit? Explain your reasoning.
Two coils have mutual inductance . The current in the first coil increases at a uniform rate of 830 A/S. (a) what is the magnitude of the induced emf in the second coil? Is it constant? (b) Suppose that the current described is in the second coil rather than the first. What is the magnitude of the induced emf in the first coil?
What do you think about this solution?
We value your feedback to improve our textbook solutions.