Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

When radium-226 decays radioactively, it emits an alpha particle (the nucleus of helium), and the end product is radon-222. We can model this decay by thinking of the radium-226 as consisting of an alpha particle emitted from the surface of the spherically symmetric radon-222 nucleus, and we can treat the alpha particle as a point charge. The energy of the alpha particle has been measured in the laboratory and has been found to be4.79MeV when the alpha particle is essentially infinitely far from the nucleus. Since radon is much heavier than the alpha particle, we can assume that there is no appreciable recoil of the radon after the decay. The radon nucleus contains 86 protons, while the alpha particle has 2 protons and the radium nucleus has protons. (a) What was the electric potential energy of the alpha–radon combination just before the decay, in MeV and in joules? (b) Use your result from part (a) to calculate the radius of the radon nucleus.

Short Answer

Expert verified

a. The electrical potential energy of the alpha-radon combination just before decay is 4.79 MeVand 7.66×10-13J.

b. The radius of the radon nucleus is 5.17×10-14m.

Step by step solution

01

(a) Determination of the electrical potential energy of alpha-radon combination just before decay.

The mechanical energy of the system is always conserved. The final energy of the system is the potential energy of the system just before the alpha particle is ejected.

U=kqq'r

Energy conservation relation here is,

Ua+Ka=Ub+Kb.

Thus, the potential energy is the final energy when the decay happens,

U = 4.79 MeV=7.66×10-13J

02

(b) Comparison of the electric potential energy calculated in part (a) to the potential energy of the proton–electron pair in the hydrogen atom.

Now, the charge of the alpha particle is =+2e

And the charge of the radon nucleus is =+86e

Substitute all the values and solve for r,

role="math" localid="1655814415670" r = kqq'U=8.99×109N×m2/C22861.60×10-19C27.66×10-13J=5.17×10-14m

Thus, the radius of the radon nucleus is5.17×10-14m.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A horizontal rectangular surface has dimensions 2.80cmby 3.20cmand is in a uniform magnetic field that is directed at an angle of 30.0°above the horizontal. What must the magnitude of the magnetic field be to produce a flux of 3.10×10-4Wb through the surface?

Can potential difference between the terminals of a battery ever be opposite in direction to the emf? If it can, give an example. If it cannot, explain why not.

Copper has 8.5×1022free electrons per cubic meter. A 71.0-cm

length of 12-gauge copper wire that is 2.05 mm in diameter carries 4.85 A of

current. (a) How much time does it take for an electron to travel the length

of the wire? (b) Repeat part (a) for 6-gauge copper wire (diameter 4.12 mm)

of the same length that carries the same current. (c) Generally speaking,

how does changing the diameter of a wire that carries a given amount of

current affect the drift velocity of the electrons in the wire?

A light bulb glows because it has resistance. The brightness of a light bulb increases with the electrical power dissipated in the bulb. (a) In the circuit shown in Fig. Q25.14a, the two bulbs A and B are identical. Compared to bulb A, does bulb B glow more brightly, just as brightly, or less brightly? Explain your reasoning. (b) Bulb B is removed from the circuit and the circuit is completed as shown in Fig. Q25.14b. Compared to the brightness of bulb A in Fig. Q25.14a, does bulb A now glow more brightly, just as brightly, or less brightly? Explain your reasoning

Light Bulbs in Series and in Parallel. Two light bulbs have constant resistances of 400Ωand 800Ω. If the two light bulbs are connected in series across a 120Vline, find (a) the current through each bulb; (b) the power dissipated in each bulb; (c) the total power dissipated in both bulbs. The two light bulbs are now connected in parallel across the120Vline. Find (d) the current through each bulb; (e) the power dissipated in each bulb; (f) the total power dissipated in both bulbs. (g) In each situation, which of the two bulbs glows the brightest? (h) In which situation is there a greater total light output from both bulbs combined?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free